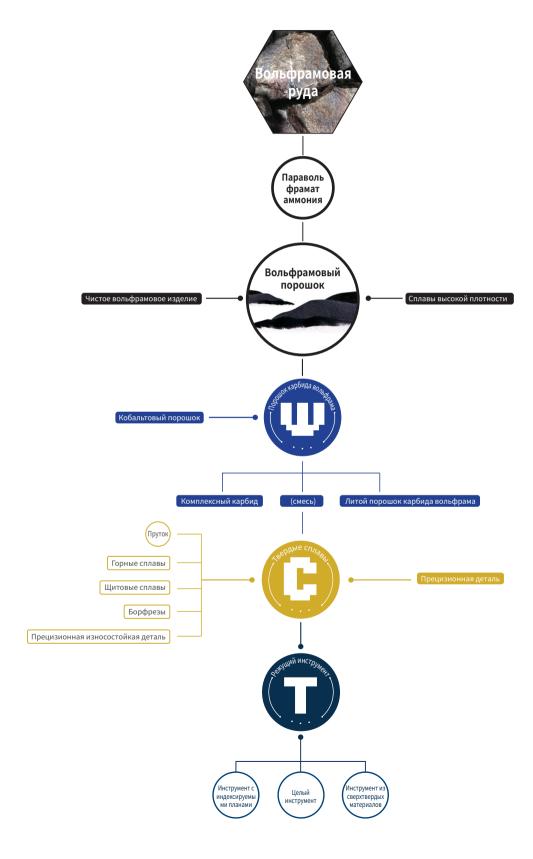


2025

Токарные инструменты

Окомпании

Xiamen Golden Egret Special Alloy Co., Ltd. (GESAC) — это китайское высокотехнологичное предприятие с международными инвестициями, основанное в 1989 году, является ключевым членом государственной корпорации Xiamen Tungsten Corporation, акции которой котируются на фондовом рынке. Компания сосредоточена на разработке и производстве высококачественных вольфрамовых порошковых материалов, твердых сплавов, прецизионных режущих инструментов и других продуктов вольфрамовой серии, а также предлагает профессиональные отраслевые решения, становясь известным поставщиком вольфрамовых порошковых материалов, твердых сплавов и режущих инструментов.


Благодаря технологическому комплексным развитию продукта по целой цепочки производства вольфрама, а также практическим и инновационным подходам к управлению, GESAC всегда сохраняет сильную динамику развития, предоставляя пользователям по всему миру продукты из вольфрамовых порошковых материалов и услуги с высоким соотношением цена-качество, решая проблемы, связанные с высокой твердостью, стойкостью к высокой температуре и износостойкостью в области современной промышленности, поставляя отличные продукты и предлагая комплексные решения, завоевав клиентов по всему миру и имея хорошую репутацию как в стране, так и за ее пределами.

На сегодняшний день в GESAC работает более 3000 сотрудников, имеется 5 производственных баз, 4 зарубежных сбытовых компании и 1 корпоративный технический центр. GESAC самостоятельно самостоятельно выполнила и завершила несколько национальных программ, таких как «Национальный план научно-технической поддержки», «Национальная программа исследований и разработок по ключевым технологиям», «Национальная программа «Факел», проекты разработки «Государственных ключевых новых продуктов», а также несколько ключевых тем исследований провинциального и муниципального уровнее. GESAC была удостоена звания «Ведущие предприятия стратегически новых отраслей», «Инновационные предприятия», «Передовые технологические предприятия»; GESAC получила множество патентов и наград, включая вторую премию за прогресс в науке и технологиях, и режущие инструменты получили более 400 патентов на изобретение, полезную модель и дизайн внешнего вида.

Производственная цепочка

GESAC обладает полной цепочкой производства продуктов из вольфрама, начиная от добычи полезных ископаемых до производства изделий из вольфрамовых порошковых материалов, из твердых сплавов, а также изготовления прецизионных режущих инструментов.

A	Стандартные токарные державки _	
	Ведомость токарных державок	154
004	Система идентификации токарных державок	
006	для наружной обработки	156
_	Токарные державки для наружной обработки	
В	(негативные)	158
	Токарные державки для наружной обработки	
	(позитивные)	174
	Система идентификации токарных державок	
	для внутренней обработки	178
	Токарные державки для внутренней обработки	180
057		
	Режущие инструменты для	
069		G
	отрезки и обработки канавок -	
074	Правила обозначения молелей режущих	
		192
		132
C		197
		131
		202
078		204
	Лержавки для отрезки и обработки канавок	234
090		257
	т сполонду отвестирато грз. ресании	
091	Ромушио инструменты пла	
		- 11
107	нарезания резьбы .	Н
109		
		264
110		0.67
116		267
		270
	•	270
D		272
		297
120		202
121	•	303
122		202
123	резания)	303
125		- 1
	приложение _	
F	Сравнительная таблица режущих пластин и	
		306
127	Сравнение твердых сплавов	308
141		
	Сравнение сплавов металлокерамики	310
128	Сравнение сплавов металлокерамики Сравнение сплавом с покрытием РСВN & РСD	310 311
128 130	Сравнение сплавом с покрытием PCBN & PCD	310
130	Сравнение сплавом с покрытием PCBN & PCD Руководство по выбору токарных инструментов	311
	Сравнение сплавом с покрытием PCBN & PCD	
	004 006 B 014 016 034 057 069 074 C 078 090 091 107 109 110 116 D 120 121 122 123 125 E	Ведомость токарных державок для наружной обработки Токарные державки для наружной обработки (негативные) Токарные державки для наружной обработки (позитивные) О14 Система идентификации токарных державок для внутренней обработки (позитивные) О34 Токарные державки для внутренней обработки о57 Режущие инструменты для отрезки и обработки канавок правила обозначения моделей режущих пластин для отрезки и обработки канавок Ведомость режущих пластин для отрезки и обработки канавок Ведомость режущих пластин для отрезки и обработки канавок О78 Пластины для отрезки и обработки канавок Ведомость режущих пластин для отрезки и обработки канавок Ведомость режущих пластин для отрезки и обработки канавок О90 Режущие инструменты для нарезания резьбы Правила обозначения моделей токарных пластин для нарезания резьбы Правила обозначения моделей токарных пластин для нарезания резьбы Ведомость токарных пластин для нарезания резьбы Правила обозначения моделей токарных прастины для нарезания резьбы Ведомость токарных пластин для нарезания резьбы Токарные прастины для нарезания резьбы Правила обозначения моделей токарных празьбы Рекомендуемые параметры резания резьбы Рекомендуемые параметры резания (количества проходов) Рекомендуемые параметры резания (скорость резания) Приложение Сравнительная таблица режущих пластин и геометрии канавок

A

Материал пластины

Сводная таблица применимости сплавов токарных пластин

		Tooperio	
Заготовки	ISO	Твердые сплавы с покрытием	Твердые сплавы
	01	CVD PVD	
	10	GPT6110 6120 GP1105R GP1105H GP1120 GAT7120 AT7120A	
	20		
P	30		
	40	GPT613 GP1136 GAT7125 GA44	
	50		
	01	0	
	10	M1115 30 43315 177115 GAT7120	
	20	22	
M	30	GM1125 GM1230 GM33220 GM3325 GAT7125 GAT7125 GA4230	
	40	GM3	
	50		
	01		
	10	GK1115 K1120 125 230	
K	20	GK11120 GK1125 GK1125 GA4230	
	30	8	
	40	_	
	01		
	10	20	GN9110 N9120 130
N	20	GNT7120	GN9120 GN9130
	30	٥	8
	40		
	01	0	
	10	GST7120 ST7115 130 GS3115	172
S	20	GST7115 GST7115 GST7130 GS3125	659125
	30		
	40	_	
	01		
E CO	10		
H	20		
	30		
	40		

Металлокерамика	Металлокерамика для покрытия	Кубический нитрид бора (CBN)	Кубический нитрид бора (CBN) с покрытыем	PCD
GP91TM GP92TM	GP31TM			
GP91TM GP92TM	GP31TM			
GP91TM	GP31TM	BKN115P	BKC120P	
				DNN125P
		BSN115P		
		<u>"</u>		
		BHN225S	BHC210P BHC225P BHC115P BHC135P BHC135P BHC215Z	
		ω		

Сплавы токарных пластин

Твердые сплавы с покрытием CVD

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
	GPT6110	Шампан- ский		• Выполнено новое покрытие CVD по специальной технологии последующей обработки на твердосплавном субстрате с высокой красностойкостью, что обеспечивает сплав превосходной устойчивостью к адгезии и отличной износостойкостью. • Рекомендуется для обработки углеродной стали и легированной стали в непрерывных режимах на высоких скоростях.
	GPT6120	Шампан- ский		• Выполнено совершенно новое покрытие CVD по уникальной технологии последующей обработки с низким напряжением на твердосплавном субстрате с идеальной устойчивостью к термопластической деформации, что обеспечивает высокую износостойкость и вязкость. • Рекомендуется для углеродной стали и легированной стали в различных режимах резания на средних и высоких скоростях.
	GPT6130	Шампан- ский		• Новый твердый сплав по специальной технологии контроля обогащения кобальта, в сочетании с новым покрытием CVD и передовой последующей обработкой, что значительно улучшает устойчивость к выкрашиванию режущей кромки. • Рекомендуется для углеродной стали и легированной стали в большинстве режимов прерывистого резания на средних скоростях.
	GP1105	Тёмно- серый		• Сочетание ультрамелкозернистого покрытия Al_2O_3 и MT-TiCN с градиентным твердосплавным субстратом обеспечивает новый сплав отличной износостойкостью. • Рекомендуется для стабильной чистовой обработки углеродной стали и легированной стали, включая отрезку стали и обработку канавок.
P	GP1105R	Желтый		• Субстрат с высокой устойчивостью к термопластической деформации и прочное CVD-покрытие средней толщины обеспечивает превосходную красностойкость, а также применяется специфическая технология для тщательной послепроизводственной обработки кромки, позволяя гарантировать стабильную обработку продукта. • Используется в рабочих условиях под высокой нагрузкой с высоким коэффициентом удаления металла, особенно при резании без СОЖ и резании высокотвердой стали.
	GP1105H	Желтый		• Специальная конструкция с вязким субстратом и новый тип теплоизоляционного покрытия для обработки под высокой нагрузкой эффективно сопротивляется распространению горячих трещин кромки при резании с использованием СОЖ, обеспечивая стабильность процесса резания. • Используется в рабочих условиях под высокой нагрузкой с высоким коэффициентом удаления металла, особенно при резании средне- и низкотвердой стали с использованием СОЖ.
	GP1115	Желтый		 Ультрамелкозернистое покрытие MT-TiCN и Al₂O₃ в сочетании с гладким индексированным слоем TiN и субстратом с хорошей износостойкостью обеспечивает новый сплав с длительным сроком службы. Рекомендуется для стабильной чистовой и получистовой обработки углеродной стали и легированной стали.
	GP1120	Золотистый	P. S. Sylvanian and Prince State of the Control of	 Ультрамелкозернистое покрытие MT-TiCN и Al₂O₃ в сочетании с гладким индексированным слоем TiN и субстратом с хорошей износостойкостью обеспечивает новый сплав с длительным сроком службы. Рекомендуется для стабильной чистовой и получистовой обработки углеродной стали и легированной стали.
	GP1225	Желтый		 Покрытие MT-TiCN, Al₂O₃ и TiN в виде столбчатого кристалла в сочетании с градиентным субстратом обеспечивает отличную износоустойчивость и вязкость. Рекомендуется для получистовой и средней черновой обработки стали и легированной стали.

Твердые сплавы с покрытием CVD

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
D	GP1130	Золоти- стый		 Тонкий МТ-ТіСN и прочный Al₂O₃ в сочетании с градиентным субстратом с высокой вязкостью обеспечивают хорошую устойчивость к выкрашиванию режущей кромки. Рекомендуется для черновой обработки углеродной и легированной стали на средне-низких скоростях резания.
	GP1135	Желтый	HANNIN TAN	 Хорошо контролируемое покрытие MT-TiCN, Al₂O₃ и TiN с хорошей износостойкостью в сочетании с градиентным твердосплавным субстратом улучшает безопасность и высокую вязкость кромки. Рекомендуется для черновой обработки углеродной и легированной стали при высокой скорости удаления металла.
	GM1115	Яркий Золоти- стый	Wages Land	 Наноколонный МТ-ТіСN, тонкий Al2O3, яркий ТіN в сочетании с градиентным субстратом обеспечивают отличную износостойкость, а технология последующей обработки с низким напряжением обеспечивает меньшее количество нароста на режущей кромке и более длительный срок службы инструментов. Рекомендуется для чистовой и получистовой обработки нержавеющей стали.
M	GM1125	Яркий Золоти- стый		• Сочетание твердосплавного субстрата и покрытия TiCN/TiN обеспечивает отличную износостойкость. Специальная технология обработки поверхности эффективно снижает сопротивление резанию и подавляет накопление чипов, срок службы инструментов может быть продлен, что делает его подходящим для получистовой обработки нержавеющей стали.
	GM1230	Яркий Золоти- стый		 Более тонкий слой Al₂O₃ и наноколонный слой MT-TiCN с градиентным субстратом. Выполняется последующая обработка для уменьшения режущей силы и нароста на режущей кромке, что для повышения стабильности. Рекомендуется для непрерывной и легко перерывающей обработки нержавеющей стали.
	GK1115	Тёмно- серый		• Мелкозернистый субстрат с высокой износостойкостью, в сочетании с толстым покрытием Al ₂ O ₃ и технологией чистовой последующей обработки, обеспечивает сплав с выдающейся износостойкостью и высокой вязкостью кромки при обработке серого чугуна. • Рекомендуется для чистовой обработки серого чугуна.
K	GK1120	Тёмно- серый		 Более толстое покрытие Al₂O₃ в сочетании с мелкозернистым субстратом обеспечивает высокую безопасность и вязкость кромки. Рекомендуется для чистовой и получистовой обработки чугуна с шаровидным графитом.
	GK1125	Тёмно- серый		 Толстое покрытие MT-TiCN и ультратонкое покрытие Al₂O₃, в сочетании с мелкозернистым субстратом с высокой износостойкостью, позволяет улучшить вязкость и получить большую износостойкость. Рекомендуется для прерывистой черновой обработки чугуна с шаровидным графитом.

Покрытие PVD и твердые сплавы

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
	GM3215	Светло- фиолето- вый Серый		 Выполнено новое покрытие TiAlN по технологии PVD в сочетании с субмикрозернистым твердосплавным субстратом WC-Со обеспечивает новый сплав отличной износостойкостью и красностойкостью. Рекомендуется для чистовой обработки нержавеющей стали и жаропрочных сплавов в условиях стабильного резания на средних скоростях.
M	GM3220	Яркий Оранже- вый		 Новое нано-структурированное PVD покрытие в сочетании с твердосплавным субстратом с высоким содержанием Со, обеспечивает сплав отличной износостойкостью и высокой горячей твердостью. Рекомендуется для непрерывной обработки, легкой и средней прерывистой обработки нержавеющей и мягкой стали на средних и низких скоростях.
	GM3225	Светло- фиолето- вый Серый		 Сочетание оптимизированного покрытия TiAlN и субмикрозернистого твердосплавного субстрата с высоким содержанием Со обеспечивает превосходную устойчивость к адгезии и вязкость. Рекомендуется для получистовой обработки нержавеющей стали и нарезания резьбы из стали, нержавеющей стали и т.д.
	GST7115	Желтый		• Новое нано-структурированное покрытие PVD с более высокой горячей твердостью и субстрат с устойчивостью к термопластической деформации. Специальная последующая обработка дает им отличную высокотемпературную износостойкость и износостойкость кромки. • Рекомендуется для чистовой и получистовой обработки жаропрочных сплавов на основе никеля на низких и средних скоростях, что позволяет получать хорошее качество поверхности.
	GST7120	Светло- фиолето- вый Серый		 Новое покрытие PVD с более высокой устойчивостью к адгезии и износостойкостью в сочетании с субмикрозернистым субстратом повышает износостойкость, устойчивость к окислению и стабильность обработки этого сплава. Рекомендуется для обработки жаропрочных сплавов на основе никеля на средних и высоких скоростях.
S	GST7130	Желтый		 Выполнено новое покрытие PVD для субмикрозернистого субстрата с высоким содержанием Со обеспечивает превосходную устойчивость к адгезии, чрезвычайно высокую вязкость, а также прочность режущей кромки. Рекомендуется для черновой обработки жаропрочных сплавов на основе никеля на средних низких скоростях, что позволяет получать хорошее качество поверхности.
	GST7135	Желтый		 Новое покрытие PVD для универсального субстратом с высоким содержание Со обеспечивает превосходную износостойкость и высокую вязкость. Рекомендуется для регулярной обработки жаропрочных сплавов и нержавеющей стали в прерывистых условиях.
	GS3115	Светло- фиолето- вый Красный		 Мелкозернистый твердосплавный субстрат, соответствующая покрытию PVD с высоким содержанием алюминия, имеет отличную устойчивость к адгезии и износостойкость. Рекомендуется для получистовой и чистовой обработки нержавеющей стали и жаропрочных сплавов.
	GS3125	Светло- фиолето- вый Серый		 Покрытие TiAlN по технологии PVD в сочетании со субстратом с высокой горячей твердостью и антипластической деформационной имеет хорошую устойчивость к окислению, устойчивость к пластической деформации и износостойкость. Рекомендуется для чистовой и получистовой обработки жаропрочных сплавов, титановых сплавов и нержавеющей стали на средних скоростях.

Покрытие PVD и твердые сплавы

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
N	GNT7120	Серебри- стый		 Недавно модернизированное покрытие обладает чрезвычайно высокой твердостью и отличной устойчивостью к адгезии, а также практически не имеет привлекательности для цветных металлов. Оно сочетается с твердосплавным субстратом с высокой износостойкостью для достижения эффективной обработки цветных металлов, таких как алюминиевые сплавы. Рекомендуется для универсальной обработки цветных металлов, таких как металлов, таких как металлов, таких как медные и алюминиевые сплавы.
	GAT7115	Серый		 Новое нано-структурированное покрытие PVD сочетается с микрозернистым твердосплавным субстратом и специальной поверхностной обработкой, что обеспечивает выдающуюся износостойкость, устойчивость к окислению и стабильность обработки. Подходит для стали и нержавеющей стали в общих условиях резания на средних или высоких скоростях.
	GAT7120	Светло- фиолето- вый Красный		 Высокоизносостойкое покрытие PVD в сочетании с микрозернистым твердосплавным субстратом обеспечивает отличную износостойкость при средних и низких скоростях, достигая чистовой обработки. Подходит для обработки стали и нержавеющей стали при стабильных условиях резания на средних и низких скоростях.
1	GAT7120A	Светло- фиолето- вый Красный		• Оптимизированный микрозернистый твердосплавный субстрат с высокоизносостойким покрытием PVD обеспечивает высокую универсальность, для резания стали имеет отличную производительность. • Подходит для обычного обрабатывающего резания стали.
1	GAT7125	Серый		 Покрытие нового поколения по новой технологии PVD, в сочетании с твердосплавным субстратом с высоким содержанием Со, обеспечивает отличную вязкость и прочность режущей кромки. Подходит для обработки стали и нержавеющей стали при нестабильных условиях резания.
	GA4330	Желтый		 Новое покрытие TiAIN с мелкозернистым субстратом повышает износостойкость и стабильность резания. Рекомендуется для обработки стали со средней твердостью и нержавеющей стали.
	GA4230	Светло- фиолето- вый Красный		 Покрытие TiAIN по технологии PVD на субстрате с высокой вязкостью обеспечивает отличную износостойкость и высокую безопасность кромки в широкой области применения. Рекомендуется как общепринятый выбор для отрезки и обработки канавок стали.

Твердые сплавы

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
S	GS9125	Без по- крытия		 • Мелкозернистый субстрат без покрытием имеет хороший баланс износостойкости и вязкости. • Рекомендуется в качестве первого выбора для титановых сплавов, и даже для получистовой обработки канавок для титановых сплавов.
	GN9110	Без по- крытия		• Сплав с мелкозернистым субстратом без покрытия имеет большую износостойкость. • Рекомендуется для чистовой обработки алюминиевых и медных сплавов на высоких скоростях резания.
N	GN9120	Без по- крытия		 Мелкозернистый субстрат, подвергнутый специальной поверхностной обработке, улучшает износостойкость и уменьшает нарост на режущей кромке. Рекомендуется для чистовой и получистовой обработки алюминиевых, медных сплавов и других цветных металлов.
	GN9130	Без по- крытия		• Сплав с мелкозернистым субстратом без покрытия имеет довольно хорошую износостойкость и вязкость. • Рекомендуется для получистовой обработки медных и алюминиевых сплавов.

Металлокерамика

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
	GP31TM	Светло- фиолето- вый Серый		 Тонкое покрытие PVD и металлокерамика имеют отличную устойчивость к наросту на режущей кромке и пластической деформации, что обеспечивает высокое качество поверхности. Рекомендуется для чистовой обработки углеродной стали и низколегированной стали на высоких скоростях резания.
P	GP91TM	Без покрытия		 Металлокерамический субстрат без покрытия имеет хорошую износостойкость и вязкость, даже отличное высокое качество поверхности. Рекомендуется для чистовой обработки углеродной стали и низкосплавной стали, когда требуется хорошее качество поверхности.
	GP92TM	Без покрытия		• Повышенная вязкость значительно улучшает устойчивость к выкрашиванию кромки, повышает универсальность инструмента, достигает стабильной и длительной обработки, при этом получает отличное качество поверхности обработки. • Подходит для непрерывной чистовой обработки углеродной стили и низколегированной стали.

Поликристаллический кубический нитрид бора (PCBN) и поликристаллический алмаз (PCD)

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
	BKN115P	Без покрытия		• Сплав с высокой твердостью без покрытия имеет отличную износостойкость. • Рекомендуется для чистовой обработки серого чугуна и обработки седел клапанов.
K	BKC120P	Светло- фиолето- вый Серый		 Выдающееся покрытие PVD может уменьшить трение между режущей кромкой и изделием, что резко улучшает износостойкость. Рекомендуется для чистовой обработки чугуна с шаровидным графитом.
	BKN225Z BKN225S	Без покрытия		• Обладает выдающейся ударостойкостью и износостойкостью, с высокой универсальностью. • Рекомендуется для получистовой и чистовой обработки серого чугуна и супертвердого легированного чугуна.
S	BSN115P	Без покрытия		• Сплав без покрытия имеет высокую вязкость кромки и химическую стабильность. • Рекомендуется для чистовой обработки деталей, изготовленных по методом ПМ.
	BHC115P	Светло- фиолето- вый Серый		• Новое покрытие TiAlN имеет хорошую износостойкость по канавкам, что уменьшает шерсткость поверхности детали. • Рекомендуется для чистовой обработки закаленной стали, когда требуется высокое качество поверхности и тесные допуски.
m	BHC125P	Светло- фиолето- вый Серый		• Субстрат из CBN с покрытием TiAlN имеет большую вязкость и износостойкость, которая способна продлить более длительный срок службы инструмента и повысить стабильность обработки. • Рекомендуется для общей обработки закаленной стали.
ш	BHC135P	Светло- фиолето- вый Серый		• Сочетание субстрата из CBN с высокой вязкость кромки и покрытия TiAlN значительно улучшает износостойкость. • Рекомендуется для прерывистой обработки закаленной стали.
	BHC210P	Бронза		 Новое двухслойное наноструктурированное покрытие AiTiSiN обладает отличной красностойкостью и износостойкостью, обеспечивая стабильную производительность и отличную шерсткость поверхности. Подходит для чистовой обработки с высокими требованиями к шерсткости поверхности и точности размеров закаленной стали.

Поликристаллический кубический нитрид бора (PCBN) и поликристаллический алмаз (PCD)

ISO	Сплав	Цвет сплава	Микроструктуры сплава	Характеристики сплава
	BHC215Z	Бронза		 Новое покрытие TiAlSiN имеет хорошую химическую износостойкость и улучшает срок службы на высоких линейных скоростях. Мелкозернистый субстрат из CBN с низким содержанием обладает отличной износостойкостью и красностойкостью. Подходит для непрерывной и легкой прерывистой обработки закаленной стали.
m	BHC225P	Бронза		 Новое двухслойное наноструктурированное покрытие AiTiSiN покрывается на специально разработанном субстрате из CBN с сильной вязкостью, что далее улучшает износостойкость, обеспечивает более стабильную обработку и длительный срок службы. Подходит для общей обработки всех видов закаленной стали.
ш	BHC225Z	Бронза		 Новое покрытие TiAlSiN имеет хорошую химическую износостойкость и улучшает срок службы на высоких линейных скоростях. Многомодальный зернистый субстрат из СВN имеет превосходную вязкость и значительно улучшенную износостойкость, и может достичь более стабильной обработки и более длительного срока службы инструмента. Подходит для обычной обработки закаленной стали.
	BHN225S	Без покрытия		• Многомодальный зернистый субстрат СВN имеет превосходную вязкость и значительно улучшенную износостойкость, и может достичь более стабильной обработки и более длительного срока службы инструмента. • Подходит для обычной обработки закаленной стали.
N	DNN125P	Без покрытия		• Среднезернистый алмаз обладает отличной износостойкостью и вязкостью. • Рекомендуется для высокоэффективной чистовой обработки алюминия, меди, пластмасс и графитных материалов.

B

Типичные токарные пластины

Система обозначения токарных пластин по стандартам ISO

чение	Форм	a	Угол при вершине нструмента	Форма	Обозі ни		Заді уго		06				туск (мм)				Ę	Допус	к (дюй	м)	
Н	Шестиугол		120°	\bigcirc	A		3 5		зна		Высота ве	умен-	Толщина (s)		.dia. Ød)	Высот	струм		олщин (s)		C.dia. (Ød)
0	Восьмиуго	льник	135°				7			4	та (м) ±0.00		±0.025		.025		а (м) 0.0002		±0.00		0.001
Р	Пятиугол	ьник	108°	\Diamond			15		/	_	±0.00		±0.025	_	.025		0.0002	_	±0.00	_	0.0001
	-		90°		E		20		'	_	±0.00		±0.025	_	.025		0.0005	_	±0.00	_	0.000
S	Квадра	ат								1	±0.01		±0.025	_	.013		0.0005	_	±0.00	_	0.0005
Т	Треуголь	ник	60°		F		25		E		±0.02		±0.025	_	.025		0.001	_	±0.00	_	0.001
С			80°				30		(3	±0.02	25	±0.13	±0	.025	±	0.001		±0.00	5 ±	0.001
D E	Ромб		55 ° 75 °		F		0			J	±0.00)5	±0.025		.05~ 0.13	±(0.0002		±0.00		0.002 [~] 0.005
F M	T OMO		50° 86°		C)	Про	чие	ŀ	<	±0.01	.3	±0.025		.05~ 0.13	±	0.0005		±0.00		0.002 ⁻ 0.005
V W	Thousan		35° 80°						I	-	±0.02	25	±0.025		.05~ 0.13	±	0.001		±0.00		0.002~ :0.005
L	Треуголь Прямоугол		90°						Ņ	И	±0.08 ±0.18		±0.13		.05~ 0.13		0.003~ 0.007		±0.00		0.002~ :0.005
Α	Паралле	200-	85°				#		1	1	±0.08 ±0.18		±0.025		.05~ 0.13		0.003~ 0.007		±0.00		0.002~ :0.005
B K	грами		82° 55°						ι	J	±0.13		±0.13		.08~		0.005~ 0.015		±0.00		0.003~ ±0.01
R	Круг			0	2 060	значе		днего				0	③ 06			 допуск					20.01
	① Обозі	начение	формы			угл	та														
	(1)								<u>(3</u>					(4)						5	
	т			N					N	1				G					7	2)
				■,	M				IA					U					_		•
	(1)																				
_				(2					(3					(4)						5	
									<u>3</u>					4						5	
	4 060		ие отверс	тия/					3		© Обозы	начені	ие длины		Ku (ISC)) (MM)				5	
	④ Обо стружОтвер-	коломат Форма	гельный у Стружко-	тия/ ступ			3)						ие длины		ки (ISC	D) (MM)					
чение	④ Обо стружОтвер-	жоломат Форма	ельный устружко- ломатель- ный уступ	тия/			3	ļ-	2	[0			Á			D/				5)	впи- санно
чение N	④ Обо стружОтвер-	жоломат Форма	ельный ус Стружко- ломатель- ный уступ Нет Односто-	тия/ ступ		Обозна-чение	_	і— Обозна- чение	2		- Длина 060	2002	ие длины Дина Обозначение		ки (ISC) Обозначение	D/	Обозначение	Длина			впи- санно окруж ности
N R	④ Обо струж Отвер- стие от	жоломат Форма	ельный ус Стружко- ломатель- ный уступ Нет Односто- ронний	тия/ ступ Форм	nta	Обозна-		обозна- чение 03	Длина (3.97		Длина Обо чен	озна- Дл	ина Обозначение Об	кромн Длина 6.9	 Обозна- чение 4	Длина (4.8		Длина	Обозна-	K/	впи- санно окруж ности (мм) 3.97
N R F	④ Обо струж Отвер- стие от	жоломат Форма	ельный уи Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний	тия/ ступ Форм	ata 7	обозна- чение	Длина	Обозна- чение 03 04	Длина (3.97 4.76	Обозначение 03 04	- _{Длина} Обо чен 4.0 4.8	озна-	ина Обозначение Об 08	Кромн Длина 6.9 8.2	обозначение 4 5	Длина (4.8 5.8	чение		Обозначение	Длина	впи- санно окруж ности (мм) 3.97 4.76
N R	④ Обо струж Отвер- стие от	жоломат Форма	ельный уи Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний	тия/ ступ Форм	nta	Обозна-		Обозна- чение 03 04	Длина ⁽ 3.97 4.76	Обозна- чение 03 04	Длина Обо чен 4.0 4.8	озна- Длі	ина Обозна- чение Об Обозна- чение Об	Д лина 6.9 8.2	Обозначение 4 5	Длина ⁰ 4.8 5.8		Длина	Обозна-	K/	впи- санно окруж ности (мм) 3.97 4.76
N R F	④ Обс стружОтвер- стие отНет	жоломат Форма верстия	СТРУЖКО- ЛОМАТЕЛЬ- НЫЙ УСТУП НЕТ ОДНОСТО- РОННИЙ ДВУСТО- РОННИЙ НЕТ ОДНОСТО-	тия/ ступ Форм	aa J	обозна- чение	Длина	Обозна- чение 03 04 05	Длина (3.97 4.76 5.56	0бозна- чение 03 04 05	Длина Обо чен 4.0 4.8 	озна- ние Дл 103 3	ина Обозначение Об О8 О О	Длина 6.9 8.2 9.6	Обозна- чение 4 5 6	Длина ^{(4.8} 5.8 6.8	чение		Обозначение	Длина	впи- санно окруж ности (мм) 3.97 4.76 5
N R F A	④ Обс стружОтвер- стие отНет	жоломат Форма верстия	СТРУЖКО- ЛОМАТЕЛЬ- НЫЙ УСТУП НЕТ ОДНОСТО- РОННИЙ ДВУСТО- РОННИЙ НЕТ ОДНОСТО- РОННИЙ ОДНОСТО- РОННИЙ	тия/ ступ Форм	11a	обозна- чение	Длина	06озна- чение 03 04 05	Длина (3.97 4.76 5.56	06озна- чение 03 04 05	- Длина Обо чен 4.0 4.8 5.6 О	озна- ние Длі	ина Обозначение Обозначение Обозначение Обозначение Обозначение Обозначение Обозначение Обозначение	Длина 6.9 8.2 9.6	Обозна- чение 4 5 6	Длина ⁽ 4.8 5.8 6.8			Обозначение	Длина	впи- санно окруж ности (мм) 3.97 4.76 5 5.56
N R F A	④ Обс стружОтвер- стие отНет	жоломат Форма верстия	СТРУЖКО- ЛОМАТЕЛЬ- НЫЙ УСТУП НЕТ ОДНОСТО- РОННИЙ ДВУСТО- РОННИЙ НЕТ ОДНОСТО-	тия/ ступ Форм	11a	обозна- чение	Длина	06означение 03 04 05 06	Длина (3.97 4.76 5.56 6.35	03 04 05 	Длина 060 чен 4.0 4.8 5.6 0 6.5 0	озна- ние Длі 03 3 3	ина 06озна- чение 06 08 .8 09 3 11	Длина 6.9 8.2 9.6 11	обозначение 4 5 6 7	Длина ⁴ .8 5.8 6.8 7.8	чение		Обозначение	Длина	впи- санно окруж ности (мм) 3.97 4.76 5 5.56 6
N R F A	Обструж Отверстие от Нет Со	коломат Форма верстия	тельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Нет Односто- ронний Двусто- ронний Двусто- ронний Двусто- ронний Односто-	тия/ ступ Форм		06означение	Длина 5 6	0603на- чение 03 04 05 06	Длина (3.97 4.76 5.56 6.35 7.94	06озна- чение 03 04 05	Длина Обо чеі 4.0 4.8 5.6 0 6.5 0 8.1 0	озна- ние Длі 	ина Обозначение Об Ов	Длина 6.9 8.2 9.6 11 13.8	Обозначение 4 5 6 7 9	Длина ⁴ .8 5.8 6.8 7.8 9.7	 11		Обозначение	Длина	впи- санно окруж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94
N R F A M	Ф Обос струж отверностие от	форма верстия тверсти- ем гверстием годним фенбором	тельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Двусто- ронний Двусто- ронний Односто- ронний Односто-	тия/ ступ Форм	11a	0бозна- чение 05 06	Длина 5 6 8 9.525	0603на- чение 03 04 05 06 07 	Длина (3.97 4.76 5.56 6.35 7.94 9.525	03 04 05 06 08 	Длина 060 чен 4.0 4.8	D3Ha- Ние Длі 133 3 1- 14 4 105 5 1- 106 6	обозна- чение 06 08 .8 09 .3 11 .4 13 .5 16	Длина 6.9 8.2 9.6 11 13.8 16.5	06озна- чение 4 5 6 7 9	Длина (4.8 5.8 6.8 7.8 9.7 11.6	 11 16	 11.2 16.6	Обозначение 16	Длина 19.7	впи- санно окруж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94 8
R F A M G W T	Ф Обос струж Отвер- стие от Стие от Со	жоломат Форма верстия 	тельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний	тия/ ступ Форм		0бозна- чение 05 06	Длина 5 6	0603на- чение 03 04 05 06	Длина (3.97 4.76 5.56 6.35 7.94	03 04 05 06 08	Длина 060 чен 4.0 4.8	D3Ha- ние Длі 	ина Обозначение Об Ов	Кромн Длина 6.9 8.2 9.6 11 13.8	обозначение 4 5 6 7 9	Длина (4.8 5.8 6.8 7.8 9.7	 11	 11.2	Обозначение	Длина	впи- санноі окруж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94
N R F A M G	Ф Обос струж Отвер- стие от Нет Соо	форма верстия тверсти- ем гверстием годним фенбором	тельный ус Стружко- ломательный уступ Нет Односто- ронний Двусто- ронний Двусто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний Нет	тия/ ступ Форм		Обозна- чение 05 06 08 09 10	Длина 5 6 8 9.525 10	06озна- чение 03 04 05 06 07 09	Длина (3.97 4.76 5.56 6.35 7.94 9.525	03 04 05 06 08 	Длина 060 чен 4.0 4.8	озна- ние Длі оз 3 оз 3 оз 3 оз 5 об 6 об 6	обозна- чение 06 08 	Кромн Длина 6.9 8.2 9.6 11 13.8 16.5	06озна- чение 4 5 6 7 9 11	Длина (4.8 5.8 6.8 7.8 9.7 11.6	чение 11 16	 11.2 16.6	Обозна- чение 16	Длина 19.7	впи- санно окруж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94 8 9.525
N R F A M G W	Ф Обос струж Отвер- стие от Стие от Со	коломат Форма верстия тверсти- ем тверстием тодним фенбором 40-60°	тельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний	тия/ ступ Форм		0500000000000000000000000000000000000	Длина 5 6 8 9.525 10 12 12.7 15.875	0бозначение 03 04 05 06 07 09 12 15	Длина (3.97 4.76 5.56 6.35 7.94 9.525 	03 04 05 06 08 	Длина Обо чен 4.0 4.8 5.6 0 6.5 0 8.1 0 9.7 0 12.9 0 16.1 1	лание Алиние Ал	ина Обозначение О	Кромн Длина 6.9 8.2 9.6 11 13.8 16.5 	Обозначение 4 5 6 7 9 11	Длина (4.8 5.8 6.8 7.8 9.7 11.6	 11 16 	 11.2 16.6	Обозна- чение 16	Длина 19.7	впи- санного круж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94 8 9.525 10 12 12.7 15.87 10 12.7 15.87 10 10 10 10 10 10 10 10 10 10
N R F A M G W	Ф Обоструж Отвер от Стие от Соо	коломат Форма верстия тверстием годим фенбором 40-60° верстием войным X 100-60° С	гельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Авусто- ронний Односто- ронний Односто- ронний Нет Двусто-	тия/ ступ Форм		06озна- чение 05 06 08 09 10 12 12 15 16 19	Длина 5 6 8 9.525 10 12.7 15.875 16 19.05	0бозначение 03 04 05 06 07 12 15 19	Длина (3.97 4.76 5.56 6.35 7.94 9.525 12.7 15.875 19.05	03 04 05 06 08 09 12 16 	Алина Обо 4.0 4.8	233Ha- 	ина Обозна- чение Обо Ов Ов О	Алина 6.9 8.2 9.6 11 13.8 16.5 22 27.5 33	06озна- чение 4 5 6 7 9 111 15 19 23	Длина (4.8 5.8 6.8 7.8 9.7 11.6 15.5 19.4 23.3		 11.2 16.6 22.1	Обозначение 16	Длина 19.7	впи- санно окруж ности (мм) 3.97 4.76 5 5.56 6 6.35 7.94 8 9.525 10 12 12.7 15.87; 16
N R F A M G W T	Ф Обос струж Отвер- от стие о	коломат форма верстия верстием годним фенбором 40-60° стверстием войным X 40-60° стверстием	гельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний Нет Двусто- ронний Нет Нет	тия/ ступ Форм		05 06 06 08 09 10 12 12 15 16	Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б	06означение 03 04 05 06 07 12 15	Длина (3.97 4.76 5.56 6.35 7.94 9.525 12.7 15.875 	03 04 05 06 08 09 12 16 	Алина Обо 4.0 4.8	233Ha- 	ина Обозна- чение Обо Ов Ов О	Кромн Алина 6.9 8.2 9.6 11 13.8 22 27.5	Обозна- чение 4 5 6 7 9 11 15 19 	Длина (4.8 5.8 6.8 7.8 9.7 11.6 - 15.5 19.4 	 11 16 22	 11.2 16.6 22.1	Обозначение 16	Длина 19.7	впи- санногом (мм) 3.97 4.76 5 5.5.56 6 6.35 7.94 8 9.525 10 12 12.7 15.873 16 19.05 20
N R F A M G G W T Q U B	Ф Обоструж Отвер от типе от т	коломат форма верстия тверстием годими фенбором 40-60 ° войным Х 40-60 ° войным Х 40-60 ° стверстием годним фенбором годним фенбором годним тодним	гельный ус Стружко- ломательный уступ Нет Односто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний Нет Двусто- ронний Нет Односто-	тия/ ступ Форм		06озна- чение 05 06 08 09 10 12 12 15 16 19 20	Б 10 12.7 15.875 16 19.05 20 25	06озна- чение 03 04 05 06 07 09 12 15 19 	Длина (3.97 4.76 5.56 6.35 7.94 12.7 15.875 19.05 19.05 	03 04 05 06 08 09 12 16 19	Длина 0660 чен 4.0 4.8	лана- д	ина Обозна- чение Обозна- чение Обозна- 	Кромн Алина 6.9 8.2 9.6 11 13.8 16.5 22 27.5 33 38.5	Обозна- чение 4 5 6 7 9 111 15 19 23 27	Длина (4.8 5.8 6.8 7.8 9.7 11.6 15.5 19.4 23.3 		 11.2 16.6 22.1	Обозначение 16	Длина 19.7	санноі окруж ности (мм) 3.97 4.76 5 5.56 6 6 6.35 7.94 8 9.525 10 12 12.7 15.87 16 19.05 20 22.22 25
N R F A M G W T T Q U В H C C	Ф Обос струж Отвер- от стие о	коломат Форма верстия тверстием годним 40-60° гверстием годним фенбором 40-60° гверстием годним фенбором годним	гельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Односто- ронний Односто- ронний Односто- ронний Нет Двусто- ронний Нет Односто- ронний Нет Односто-	TURA/ CTYIN POPA ELL CTYIN ELL ELL CTYIN ELL ELL CTYIN ELL ELL ELL ELL ELL ELL ELL E		06озна- чение 05 06 08 09 10 12 15 16 19 20 25 25	Б 4 8 9.525 10 12 12.7 15.875 16 19.05 20 25 25.4	06озна- чение 03 04 05 06 07 09 12 15 19 22 25	Длина (3.97 4.76 5.56 6.35 7.94 9.525 15.875 19.05 19.05 22.225 25.4	030603на-чение 03 04 06 08 12 16 19 22 25	Длина 060 чен 4.0 4.8	лана- д	ина Обозна- чение Обозна- чение Обозна- 	Кромн Длина 6.9 8.2 9.6 11 13.8 22 27.5 33 38.5 44	Обозна- чение 4 5 6 6 7 9 111 15 19 23 27 31	Длина (4.8 5.8 6.8 7.8 9.7 11.6 15.5 19.4 23.3 27.1 	чение 11 16 22	 11.2 16.6 22.1	Обозначение 16	Длина 19.7	впи- санної мкруж ности (мм) 3.97 4.76 5.5.66 6.35 7.94 8 9.5.25 10 12 12.7 15.87! 16 19.05 20 22.22! 25 25.4
N R F A A M G G W T U B B H	Ф Обос струж Отвер- от стие о	коломат форма верстия тверстием годими фенбором 40-60 ° войным Х 40-60 ° войным Х 40-60 ° стверстием годним фенбором годним фенбором годним тодним	тельный ус Стружко- ломатель- ный уступ Нет Односто- ронний Двусто- ронний Двусто- ронний Односто- ронний Односто- ронний Нет Двусто- ронний Нет Двусто- ронний Нет Двусто- ронний Нет Односто- ронний Нет	тия/ ступ Форм		06озна- чение 05 06 08 09 10 12 12 15 16 19 20	Б 10 12.7 15.875 16 19.05 20 25	06озна- чение 03 04 05 06 07 09 12 15 19 	Длина (3.97 4.76 5.56 6.35 7.94 12.7 15.875 19.05 19.05 	03 04 05 06 08 09 12 16 19	Алина 066 чен 4.0 4.8	жиние Алиние Ал	ина Обозна- чение Обозна- чение Обозна- 	Кромн Алина 6.9 8.2 9.6 11 13.8 16.5 22 27.5 33 38.5	Обозна- чение 4 5 6 7 9 111 15 19 23 27	Длина (4.8 5.8 6.8 7.8 9.7 11.6 15.5 19.4 23.3 	чение 11 16 22	 11.2 16.6 22.1	Обозначение 16	Длина 19.7	впи- саннено мужум 4.76 5 5.56 6 6.35 7.94 8 9.52 10 12 12.7 15.87 16 19.0 20 22.22 25

	Форма пластины: H,O,P,S,T,C,E,M,W, R											
Размер вписанной	Допуск размера вписанной окружности (Ød) (мм)		(MM)		Размер вписанной	Допуск р вписа окружност	нной .	Допуск вершины ин (м	нструмента			
окружности (мм)	J, K,L, M,N	U	M,N	U	окружности (дюйм)	класс J, K L,M,N	класс U	класс J, K L,M,N	класс U			
6.35	±0.05	±0.08	±0.08	±0.13	0.250	±0.002	±0.003	±0.003	±0.005			
9.525	±0.05	±0.00	±0.00	20.13	0.375	±0.002	±0.005	±0.005	±0.005			
12.7	±0.08	±0.13	±0.13	±0.2	0.500	±0.003	±0.005	±0.005	±0.008			
15.875	±0.1	±0.18	±0.15	±0.27	0.625	±0.004	±0.007	±0.006	±0.011			
19.05		±0.18	±0.15	±0.27	0.750	±0.004	±0.007	±0.006	±0.011			
25.4	±0.13	±0.25	±0.18	±0.38	1.000	±0.005	±0.010	±0.007	±0.015			
31.75	±0.15	±0.25	402	±0.20	1.250	±0.00c	±0.010	+0.000	±0.015			
32	±0.15	±0.25	±0.2	±0.38	1.260	±0.006	±0.010	±0.008	±0.015			

	Форма пластины: D							Форма пл	астины: V		
Вписанная Допуск вписанной Допуск вершины окружность Размеры Размеры Высота		окруж	анная кность иеры	окруж	писанной кности иеры	инстр	вершины умента сота				
MM	in	MM	in	ММ	in	ММ	in	MM	in	ММ	in
6.35	0.250	±0.05	±0.002	±0.11	±0.004	6.35	0.250	±0.05	±0.002	±0.15	±0.006
9.525	0.375	±0.05	±0.002	±0.11	±0.004	9.525	0.375	±0.05	±0.002	±0.15	±0.006
12.7	0.500	±0.08	±0.003	±0.15	±0.006	12.7	0.500	±0.08	±0.003	±0.20	±0.008
15.875	0.625	±0.10	±0.004	±0.18	±0.007	15.875	0.625	±0.10	±0.004	±0.27	±0.011
19.05	0.750	±0.10	±0.004	±0.18	±0.007	19.05	0.750	±0.10	±0.004	±0.27	±0.011

Обозначение	Толщина (мм)
01	1.59
02	2.38
T2	2.78
03	3.18
T3	3.97
04	4.76
05	5.56
06	6.35
07	7.94
09	9.52
⑥ Обозначені	ие толщины

04

80

_

Размер вписанной окружности (мм)

Толщина пластины (S)

Высота вершины инструмента (м)

	-\IC
Обозначение	Радиус вершины инструмента (мм)
00	0.03
02	0.2
04	0.4
08	0.8
12	1.2
16	1.6
20	2.0
24	2.4
28	2.8
32	3.2

® Обозначение стружколомательного уступа

Обозначение стружколомательного уступа

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
QF	• QF подходит для чистовой обработки обыкновенной стали и легированной стали. • Кривая кромка, острая режущая кромка, хорошее управление отводом стружки, благодаря криволинейной кромке можно достигать хорошей поверхностной чистоты.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.12 15°	
TF	• ТГ подходит для чистовой обработки стали и легированной стали. • Кривая конструкция режущей кромки, более острая режущая кромка, низкое сопротивление резанию, высокая поверхностная чистота, хороший эффект ломания и отвода стружки.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.08 4° 15°	
GF	• GF подходит для чистовой обработки обычной стали и легированной стали. • Острая вершина инструмента, сильная режущая кромка, хорошее управление отводом стружки при неглубоком резании.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.12	
SPL	• SPL подходит для легкого резания обычной стали и легированной стали. • Широкий диапазон ломания стружки и хорошая универсальность.	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.1 16 °	
QM	• QM подходит для получистовой обработки обычной стали и легированной стали. • Конструкция ступенчатого и волнового стружколомательного уступа расширяет диапазон ломания стружки.	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.2 19°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CNMG-QF	DNMG-QF	SNMG-QF	TNMG-QF	VNMG-QF	WNMG-QF
P034	P039	P043	P047	P051	P053
CNMG-TF	DNMG-TF		TNMG-TF	VNMG-TF	WNMG-TF
P034	P039		P047	P051	P053
CNMG-GF	DNMG-GF	SNMG-GF	TNMG-GF	VNMG-GF	WNMG-GF
P034	P039	P043	P047	P051	P053
CNMG-SPL	DNMG- SPL		TNMG- SPL	VNMG- SPL	WNMG- SPL
P034	P039		P047	P051	P053
CNMG-QM	DNMG-QM	SNMG-QM	TNMG-QM	VNMG-QM	WNMG-QM
P035	P040	P043	P047	P051	P054

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
GM	 • GM подходит для получистовой обработки обычной стали и легированной стали. • Сильная плоская режущая кромка с хорошей прочностью. 	ap[nm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.2	
SV	 SV подходит для получистовой обработки обычной стали и легированной стали. Проходная канавка и широкая стружкоотводная канавка позволяют резать в нестабильных условиях работы. Длинная канавка удаления стружки позволяет большую глубину резания. 	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.18 15°	
QR	 • QR подходит для черновой обработки углеродной стали, литой стали и легированной стали. • Переменный передний угол и ленточка обеспечивают достаточную остроту кромки и прочность при различных глубинах резания. 	op [mn] 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0.32	
QH	 QН подходит для тяжелой обработки углеродной стали, литой стали и легированной стали. Переменное расстояние между ленточкой и стружколомательным уступом обеспечивает более низкую силу резания. Прямые режущие кромки с усилением балансируют прочность и действие резания. 	ap [m] 14 12 10 8 6 4 2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 f[m/rev]	0.47 24°	
TS	 • ТЅ подходит для получистовой обработки обычной стали и легированной стали. • Конструкция с большим передним углом снижает силу резания. • Конструкция с переменной глубиной канавки обеспечивает отличную способность к отводу стружки. 	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.08 17°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CNMG-GM	DNMG-GM	SNMG-GM	TNMG-GM	VNMG-GM	WNMG-GM
P035	P040	P043	P048	P052	P054
CNMG _{R/L} -SV	DNMG _{R/L} -SV	SNMG _{R/L} -SV	TNMG _{R/L} -SV		WNMG _{R/L} -SV
P035	P040	P044	P048		P054
CNMG-QR	DNMG-QR	SNMG-QR	TNMG-QR		WNMG-QR
P037	P042	P046	P049		P056
CNMM-QH		SNMM-QH			
P038		P046			
	DNMGR/L-TS		TNMGR/L-TS		
	P041		P048		

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
TP	 ТР подходит для получистовой обработки обычной стали, легированной стали и чугуна. Двойной передний угол и большая ширина режущей кромки обеспечивают повышение прочности. Общая конструкция узора, стабильная и надежная установка. Стрелочный стружколомательный уступ улучшает способность к ломанию стружки при больших глубинах резания. 	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.08	
SF	• SF подходит для чистовой обработки нержавеющей стали. • Режущая кромка острая, что приводит к низкой силе резания, особенно подходит для обработки тонкостенных конструкций и длинных валов.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	18°	
YF	• ҮГ подходит для чистовой обработки нержавеющей стали. • Конструкция с углом наклона используется для уменьшения сопротивления резанию и обеспечения хорошего управления стружкой.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.08 14.5 ° 9.5 °	
SM	 SM подходит для умеренной обработки нержавеющей стали и низкоуглеродистой стали. Острая режущая кромка. 	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.075	
LM	 LM подходит для получистовой обработки нержавеющей стали и жаропрочных сплавов. Переменный передний угол и ширина режущей кромки обеспечивают остроту и прочность. Конструкция со сердцевидным стружколомательным уступом обеспечивает отличное качество ломания стружки. 	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.04 20°	
LR	 LR подходит для черновой обработки нержавеющей стали. Небольшой передний угол, большая ширина режущей кромки и высокая прочность вершины инструмента. Стружколомательный уступ широкий и неглубокий. Стружколомательный уступ широкий и неглубокий, чтобы обеспечить хороший эффект отвода стружки. 	ap[mn] 7 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0.3	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CNMG-TP	DNMG-TP	SNMG-TP	TNMG-TP	VNMG-TP	WNMG-TP
P036	P041	P044	P048	P052	P055
CNMG-SF	DNMG- SF	SNMG-SF	TNMG- SF	VNMG- SF	WNMG-SF
P034	P039	P043	P047	P051	P053
CNMG-YF	DNMG- YF	SNMG-YF	TNMG- YF	VNMG-YF	WNMG-YF
P034	P039	P043	P047	P051	P053
CNMG-SM	DNMG- SM	SNMG- SM	TNMG- SM	VNMG- SM	WNMG-SM
P036	P040	P044	P048	P052	P055
CNMG-LM	DNMG- LM	SNMG- LM	TNMG- LM	VNMG- LM	WNMG-LM
P036	P041	P045	P049	P052	P055
CNMG-LR	DNMG-LR	SNMG-LR	TNMG-LR		WNMG-LR
P037	P042	P045	P049		P056

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
WMV (Wiper)	• WMV подходит для получистовой обработки обычной стали, легированной стали и чугуна. • Широкий стружколомательный уступ, низкое сопротивление отводу стружки. • Отличная острая режущая кромка и хорошая прочность. • Отличное качество поверхности.	3 0 0,1 0.2 0.3 0.4 0.5 0,6 0,7 0.8 0.9 (figur/ev)	0.25	
MK	 • МК подходит для чистовой обработка чугуна. • Режущая кромка сочетает в себе остроту и прочность, и низкое сопротивление отводу стружки. 	ap [mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.25 15 ° 3 °	
UK	• UK подходит для обработки чугуна. • Хорошие характеристики после умеренной обработки в обычных условиях.	ap(mm) 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0.30 16°	
НК	• НК подходит для тяжелой обработки чугуна. • Высокая прочность режущей кромки, большая канавка для отвода стружки, хорошо подходит для обработки с большими глубинами и ширинами резания.	op[me] 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0.36 24°	
Пло- ский	 Плоский верх (инструмент) для обработки чугуна. Стабильное позиционирование. Высокопрочная режущая кромка, специально разработана для прерывистого режущего процесса. 	op(mm) 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
	Wiper		Wiper		
CNMG-WMV	DNMX-WMV		TNMX-WMV		WNMG-WMV
P036	P041		P049		P055
CNMG-MK	DNMG-MK	SNMG-MK	TNMG-MK	VNMG-MK	WNMG-MK
P037	P042	P045	P049	P052	P055
CNMG-UK	DNMG-UK	SNMG-UK	TNMG-UK	VNMG-UK	WNMG-UK
P037	P042	P045	P049	P052	P056
				(9//	
CNMG-HK	DNMG-HK	SNMG-HK	TNMG- HK	VNMG- HK	WNMG- HK
P038	P042	P046	P050	P052	P056
CNMA	DNMA	SNMA	TNMA		WNMA
P038	P042	P046	P050		P056

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
EL	• EL подходит для чистовой и получистовой обработки жаропрочных сплавов и титановых сплавов. • Подходит для обработки длинных выступающих и тонкостенных заготовок. • Низкая сила резания, что позволяет избежать вибрации.	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	13°	
ЕМ	 • ЕМ подходит для получистовой и черновой обработки жаропрочных сплавов. • Высокая прочность режущей кромки, подходит для глубокой обработки. 	op[mn] 7 6 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[mm/rev]	0.3	
SML	 SML подходит для чистовой и получистовой обработки нержавеющей стали и жаропрочных сплавов. Конструкция с углом наклона снижает сопротивление резанию и обеспечивает хорошее управление стружкой. 	ap[m] 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[m/rev]	0.05 16°	
SMM	• SMM подходит для получистовой и черновой обработки нержавеющей стали и жаропрочных сплавов. • Уникальная конструкция со стружколомательным уступом удовлетворяет потребности обработки с различной глубиной резания и подачей, и обеспечивает стабильность обработки.	ap [m] 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f[m/rev]	0.05	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CNMG-EL	DNMG-EL			VNMG-EL	WNMG-EL
P034	P039			P051	P053
CNMG-EM	DNMG-EM	SNMG-EM	TNMG-EM	VNMG-EM	WNMG-EM
P036	P041	P045	P049	P052	P055
CNMG-SML	DNMG-SML			VNMG-SML	WNMG-SML
P035	P040			P051	P053
CNMG-SMM	DNMG-SMM	SNMG-SMM		VNMG-SMM	WNMG-SMM
P036	P041	P045		P052	P055

Задний угол 5°

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
ММ	• ММ подходит для получистовой и чистовой обработки обычной стали, легированной стали и нержавеющей стали. • Острая режущая кромка, что позволяет достичь высокого качества поверхности.	ap[mm] 3 2 1 0 0.1 0.2 0.3 f[mm/rev]	15°8°	
FP	• FP подходит для чистовой обработки обычной и легированной стали. • Конструкция без ширины режущей кромки и переднего угла обеспечивает хорошее ломание стружки при малой глубине резания и малой подаче.	ap[MM] 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[MM/o6]	1°	
SPL	 SPL подходит для легкого резания обычной и легированной стали. Широкий диапазон ломания стружки и высокая универсальность. 	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.2	
GP	• GP подходит для легкого резания обычной стали, легированной стали, нержавеющей стали и чугуна. • Комбинация плоской режущей кромки и двойного переднего угла обеспечивает высокую прочность вершины инструменты и остроту резания.	ap[MM] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[MM/o6]	0.13	
TP	• ТР подходит для легкого резания обычной стали, легированной стали и чугуна. • Двойной передний угол и большая ширина режущей кромки обеспечивают повышение прочности. • Общая конструкция узора, стабильная и надежная установка. • Стрелочный стружколомательный уступ может улучшить характеристики ломания стружки при больших глубинах резания.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.12	
KM	• КМ подходит для получистовой и черновой обработки обычной стали, легированной стали и чугуна. • Конструкция с переменной ленточкой сочетает остроту с устойчивостью к переломам.	ap [mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.18	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
				VBMT-MM P066	
				. 555	
				VBMT-FP	
				P066	
				VBMT-SPL	
				P066	
				6 33	
				VDIAT CD	
				VBMT-GP P066	
				3/	
				VBMT-TP	
				P066	
				VBMT-KM	
				P066	

Задний угол 7°

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
ММ	 • ММ подходит для легкого резания обычной стали, легированной стали и нержавеющей стали. • Острая режущая кромка, что позволяет достичь высокого качества поверхности. 	ap[mm] 3 2 1 0 0.1 0.2 0.3 f[mm/rev]	15°8°	
FP	• FP подходит для чистовой обработки обычной и легированной стали. • Конструкция без ширины режущей кромки и переднего угла обеспечивает хорошее ломание стружки при малой глубине резания и малой подаче.	ap[MM] 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[MM/o6]	1°	
SPL	• SPL подходит для легкого резания обычной и легированной стали; • Широкий диапазон ломания стружки и хорошая универсальность.	ap [mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 f[mm/rev]	0.2	
GP	• GP подходит для легкого резания обычной стали, легированной стали, нержавеющей стали и чугуна. • Комбинация плоской режущей кромки и двойного переднего угла обеспечивает высокую прочность вершины инструменты и остроту резания.	ap[MM] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[MM/o6]	0.13	
TP	 ТР подходит для легкого резания обычной стали, легированной стали и чугуна. Двойной передний угол и большая ширина режущей кромки обеспечивают повышение прочности. Общая конструкция узора, стабильная и надежная установка. Стрелочный стружколомательный уступ может улучшить характеристики ломания стружки при больших глубинах резания. 	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.12	

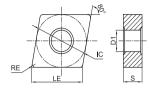
Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CCMT-MM	DCMT-MM	SCMT-MM	TCMT-MM	VCMT-MM	
P057	P060	P062	P063	P067	
CCMT-FP	DCMT-FP		TCMT-FP	VCMT-FP	
P057	P060		P063	P067	
0				8	
CCMT-SPL	DCMT-SPL		TCMT-SPL	VCMT-SPL	
P057	P060		P063	P067	
CCMT-GP CCGT-GP	DCMT-GP DCGT-GP	SCMT-GP	TCMT-GP TCGT-GP	VCMT-GP	WCMT-GP
P057	P060	P062	P063	P067	P068
CCMT-TP	DCMT-TP	SCMT-TP	TCMT-TP		
P058	P061	P062	P063		

Задний угол 7°

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
KM	• КМ подходит для получистовой и черновой обработки обычной стали, легированной стали, чугуна. • Конструкция с переменной ленточкой сочетается остроту с устойчивостью к переломам.	3 2 1 0 0.1 0.2 0.3 0.4 0.5 f(mm/rev)	0.18	
AL	 • AL подходит для резания алюминиевых сплавов. • Большой передний угол, острая режущая кромка. 	op (m) 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f(m/rev)	0.67 25 ° 12 °	

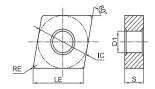
Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
CCMT-KM	DCMT-KM	SCMT-KM	TCMT-KM	VCMT-KM	
P058	P061	P062	P064	P067	
CCGX-AL	DCGX-AL	SCGX-AL	TCGX-AL	VCGX-AL	
P058	P061	P062	P064	P067	

Специализация токарных пластин Токарные пластины (позитивные) Задний угол 11°

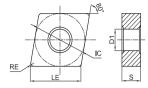

Стружко- ломатель- ный уступ	Функция	Область применения	Поперечное сечение стружколомательного уступа	
ММ	 • ММ подходит для легкого резания обычной стали, легированной стали и нержавеющей стали. • Острая режущая кромка, что позволяет достичь высокого качества поверхности. 	ap[mm] 3 2 1 0 0.1 0.2 0.3 f[mm/rev]	15°8°	
SPL	 SPL подходит для легкого резания обычной и легированной стали. Широкий диапазон ломания стружки и хорошая универсальность. 	ap[mm] 5 4 3 2 1 0 0.1 0.2 0.3 0.4 0.5 filmm/rev]	0.2	
GP	• GP подходит для легкого резания обычной стали, легированной стали, нержавеющей стали и чугуна. • Комбинация плоской режущей кромки и двойного переднего угла обеспечивает прочность вершины инструмента и остроту резания.	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.13	
TP	 ТР подходит для легкого резания обычной стали, легированной стали и чугуна. Двойной передний угол и большая ширина режущей кромки обеспечивают повышение прочности. Общая конструкция узора, стабильная и надежная установка. Стрелочный стружколомательный уступ может улучшить характеристики ломания стружки при больших глубинах резания. 	ap[mm] 4 3 2 1 0 0.1 0.2 0.3 0.4 f[mm/rev]	0.12 13°	

TPMT-MM P065 TPMT-SPL P065 CPGT-GP P059 TPGT-GP P065 TPMT-TP P065	Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Треугольник 80°
P065 TPMT-SPL P065 P065 CPGT-GP TPGT-GP P059 TPMT-TP						
TPMT-SPL P065 CPGT-GP TPGT-GP P059 TPMT-TP				TPMT-MM		
P065 CPGT-GP P059 TPGT-GP P065 TPMT-TP				P065		
P065 CPGT-GP P059 TPGT-GP P065 TPMT-TP						
CPGT-GP TPGT-GP P059 P065				TPMT-SPL		
P059 P065 TPMT-TP				P065		
P059 P065 TPMT-TP						
TPMT-TP	CPGT-GP			TPGT-GP		
	P059			P065		
P065				TPMT-TP		
				P065		

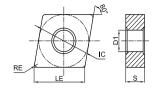
Токарные пластины (негативные)



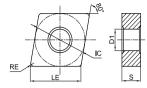
								Te	вер	дые	е сг	тла	вы	с п	окј	ЭЫ.	гие	М						Твердые сплавы		Метал- локера- мика						
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GPIIIS	GP1120	GP1130	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1110	GK1125	GST7115	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9120	GN9130	GP31TM	GP91TM GP92TM
and and	CNMG090304-QF	9.7	9.525	3.18	3.81	0.4))																			
	CNMG120404-QF	12.9	12.7	4.76	5.16	0.4	•	•	•	•										•												0
N.S.C.	CNMG120408-QF	12.9	12.7	4.76	5.16	8.0	•	•	•	•)		0																	0	0
	CNMG120404-TF	12.9	12.7	4.76	5.16	0.4																									 O	0
2	CNMG120408-TF		12.7																												0	
	CHING120100 11	12.3	12.1	1.10	3.10	0.0																										
1-20-1	CNMG090308-GF		9.525)																					
	CNMG120404-GF		12.7							_																						
	CNMG120408-GF		12.7								-		•																			
	CNMG120412-GF CNMG120404-SF	12.9 12.9	12.7 12.7		5.16					_									•													
	CNMG120404-SF	12.9	12.7	4.76														_	0													
	CINICIZO 100 SI	12.3	12.1	1.10	3.10	0.0																										
	CNMG120404-YF	12.9	12.7	4.76	5.16	0.4													• (•												
	CNMG120408-YF	12.9	12.7	4.76	5.16	0.8													•	•												
	CNMG120404-SPL	12 9	12 7	4 76	5 16	0.4																										-
	CHING120101 01 E	12.3		1.10	3.10	0.1																										
Essas																																
	CNMG120404-EL	12.9	12.7	4.76	5.16	0.4																	•		•							
	CNMG120408-EL	12.9	12.7	4.76	5.16	0.8																	•	•	•							
567	CNMG120412-EL	12.9	12.7	4.76	5.16	1.2																	•	•								
	CNMG160608-EL	16.1	15.875	6.35	6.35	0.8																	•	•								
	CNMG160612-EL	16.1	15.875	6.35	6.35	1.2																	•	•								
	CNMG190608-EL	19.3	19.05	6.35	7.94	0.8																			•							
	CNMG190612-EL	19.3	19.05	6.35	7.94	1.2																			•							



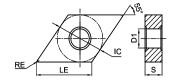
				мерь мм)	I							Тв	верд	ые	СП	лав	зы (с пс	крі	ЫΤИ	ем							рды 1авы	Э Д	1ета. окер мика	oa-
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1105	GPIIIS	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GM3215	GM3225	GK1115	GK1120	GK1125	GST7115	GS1/120	GS3115 GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM	GP92TM
	CNMG120404-SML	12.9	12.7	4.76	5.16	0.4																	•								
	CNMG120408-SML	12.9	12.7	4.76	5.16	0.8																	•								
	CNMG120412-SML	12.9	12.7	4.76	5.16	1.2																	•								
	CNMG090304-QM	9.7	9.525	3.18	3.81	0.4	0	_	•		<u> </u>	•)	•																	
	CNMG090308-QM	9.7	9.525	3.18	3.81	0.8	•			•		С)	•																	
	CNMG120404-QM	12.9	12.7	4.76	5.16	0.4	•	•)	•		0				•									•	•	
	CNMG120408-QM	12.9	12.7	4.76	5.16	0.8	•	•	•			•	•	•		•				•										•	
	CNMG120412-QM	12.9	12.7	4.76	5.16	1.2	•	•					•	•							•										
	CNMG120416-QM	12.9	12.7	4.76	5.16	1.6)	•)	•																	
	CNMG160608-QM	16.1	15.875	6.35	6.35	0.8	•	•	•	•		•	•	0																	
	CNMG160612-QM	16.1	15.875	6.35	6.35	1.2	•	•	•	•		•)	•																	
	CNMG190608-QM	19.3	19.05	6.35	7.94	0.8	•	•	•	•		•)								•										
	CNMG190612-QM	19.3	19.05	6.35	7.94	1.2			•)	•	0																		
	CNMG190616-QM	19.3	19.05	6.35	7.94	1.6	0			•		•)																		
	CNMG120404-GM	12.9	12.7	4.76	5.16	0.4				•		•)																		
	CNMG120408-GM	12.9	12.7	4.76	5.16	0.8				•		•)																		
	CNMG120412-GM	12.9	12.7	4.76	5.16	1.2				•		•)																		
	CNMG120416-GM	12.9	12.7	4.76	5.16	1.6)	•)																		
	CNMG160608-GM	16.1	15.875	6.35	6.35	0.8				•		•)																		
	CNMG160612-GM	16.1	15.875	6.35	6.35	1.2				•		•)																		
	CNMG160616-GM	16.1	15.875	6.35	6.35	1.6)	•)																		
	CNMG190608-GM	19.3	19.05	6.35	7.94	0.8						C)																		
	CNMG190612-GM	19.3	19.05	6.35	7.94	1.2)	•)																		
	CNMG190616-GM	19.3	19.05	6.35	7.94	1.6						•)																		
	CNMG120408R-SV	12.9	12.7	4.76	5.16	0.8						•)																		
	CNMG120408L-SV	12.9	12.7	4.76	5.16	0.8						•)																		



				мерь мм)	I							Т	вер	ды	е сп	іла	ВЫ	с п	окр	ЫΤИ	ем							рдые тавы	лоі	етал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1120	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GK1115	GK1120	GK1125	GST7115	GS1/120	GS3115 GS3115	GNT7120	GN9110	GN9120 GN9130	GP31TM	GP91TM GP92TM
	CNMG090304-SM	9.7	9.525	3.18	3.81	0.4										0	•		•											
	CNMG090308-SM	9.7	9.525	3.18	3.81	0.8										•	0		•)										
	CNMG120404-SM	12.9	12.7	4.76	5.16	0.4									•	•	•	0 (•)					0					
	CNMG120408-SM	12.9	12.7	4.76	5.16	0.8									•	•	•	•	•)					•					
	CNMG120412-SM	12.9	12.7	4.76	5.16	1.2									•	•	•	(•						•					
	CNMG120416-SM	12.9	12.7	4.76	5.16	1.6																			•					
	CNMG160608-SM	16.1	15.875	6.35	6.35	0.8										•	•		•)										
	CNMG160612-SM	16.1	15.875	6.35	6.35	1.2										0	0		•)										
	CNMG160616-SM	16.1	15.875	6.35	6.35	1.6										•	•		•)										
	CNMG190608-SM	19.3	19.05	6.35	7.94	0.8											•		•)										
	CNMG190612-SM	19.3	19.05	6.35	7.94	1.2										0	•		•)										
	CNMG190616-SM	19.3	19.05	6.35	7.94	1.6										0	0	(•)										
	CNMG120404-TP	12.9	12.7	4.76	5.16	0.4																							•	•
	CNMG120408-TP	12.9	12.7	4.76	5.16	8.0																							•	•
	CNMG120404-LM	12.9	12.7	4.76	5.16	0.4									•	•	•	•	• •)										
5	CNMG120408-LM														•	•	•	•	•											
	CNMG120412-LM	12.9	12.7	4.76	5.16	1.2									•	•	0	• (•)										
	CNMG120404-EM	12.9	12.7	4.76	5.16	0.4																	• (
130057	CNMG120408-EM	12.9	12.7	4.76	5.16	0.8																	• (
	CNMG120412-EM	12.9	12.7	4.76	5.16	1.2																	• (
	CNMG160608-EM	16.1	15.875	6.35	6.35	0.8																	•							
	CNMG160612-EM	16.1	15.875	6.35	6.35	1.2																	• (
	CNMG120404- SMM	12.9	12.7	4.76	5.16	0.4																	•							
	CNMG120408- SMM	12.9	12.7	4.76	5.16	8.0																	•							
	CNMG120412- SMM	12.9	12.7	4.76	5.16	1.2																	•							
	CNMG120408- WMV	12.9	12.7	4.76	5.16	0.8					(0								•	•	0								
	CNMG120412- WMV	12.9	12.7	4.76	5.16	1.2									•					•		•								

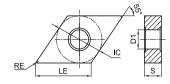


				мерь мм)	I							Тве	ерд	ые	СП.	лав	ы с	ΞП	кр	ыті	1ем							рды лавь	е	Летал- окера- мика
К	од заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP10130	GP1105 GP1115	GP1120	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GMSZTS	GM32250	GK1115	GK1120	GK1125	GST7115	GST7130	GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
	CNMG120404-MK	12.9	12.7	4.76	5.16	0.4														•	•									
	CNMG120408-MK	12.9	12.7	4.76	5.16	8.0														•	•									
	CNMG120412-MK	12.9	12.7	4.76	5.16	1.2														•	•									
	CNMG120404-UK	12.9	12.7	4.76	5.16	0.4														•	•	•								
	CNMG120408-UK	12.9	12.7	4.76	5.16	0.8														•	•	•								
	CNMG120412-UK	12.9	12.7	4.76	5.16	1.2														•	•	•								
	CNMG120416-UK	12.9	12.7	4.76	5.16	1.6														0		0								
	CNMG160608-UK	16.1	15.875	6.35	6.35	0.8														•	•	•								
	CNMG160612-UK	16.1	15.875	6.35	6.35	1.2														•	•	•								
	CNMG160616-UK	16.1	15.875	6.35	6.35	1.6														0	•	•								
	CNMG190612-UK	19.3	19.05	6.35	7.94	1.2														•		•								
	CNMG190616-UK	19.3	19.05	6.35	7.94	1.6														•		0								
	CNMG120408-LR	12.9	12.7	4.76	5.16	0.8								(•			•	•)										
	CNMG120412-LR	12.9	12.7	4.76	5.16	1.2								(•)										
Way	CNMG120416-LR	12.9	12.7	4.76	5.16	1.6								(0)										
	CNMG160608-LR	16.1	15.875	6.35	6.35	0.8								-	•				•)										
(She stay)	CNMG160612-LR	16.1	15.875	6.35	6.35	1.2								•	•)										
	CNMG190612-LR	19.3	19.05	6.35	7.94	1.2								(•			•)										
	CNMG190616-LR	19.3	19.05	6.35	7.94	1.6								•	•)										
	CNMG120408-QR	12.9	12.7	4.76	5.16	8.0	•	• •		•		•	•	•																
	CNMG120412-QR	12.9	12.7	4.76	5.16	1.2	•	•		•		•	•	•																
	CNMG120416-QR	12.9	12.7	4.76	5.16	1.6	•	• •				•		•																
	CNMG160608-QR	16.1	15.875	6.35	6.35	8.0						•		•																
	CNMG160612-QR	16.1	15.875	6.35	6.35	1.2	•	• (•		•	•	•																
	CNMG160616-QR	16.1	15.875	6.35	6.35	1.6	•	•		•		•	•	•																
	CNMG190608-QR	19.3	19.05	6.35	7.94	8.0	0	0 0)			•		•																
	CNMG190612-QR	19.3	19.05	6.35	7.94	1.2		•		0 0		•		•																
	CNMG190616-QR	19.3	19.05	6.35	7.94	1.6	0	• •				•		•																
	CNMG190624-QR	19.3	19.05	6.35	7.94	2.4	0	•)	•				•																
	CNMG250924-QR	25.8	25.4	9.52	9.12	2.4	0	• ()			•																		

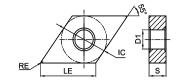


				мерь мм)	I							Тве	рды	ie ci	пла	вы	СП	10К	ры	ти	ем							рды павь	٦	Летал- окера- мика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1105	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	021/120	GS1/130	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
	CNMG120408-HK	12.9	12.7	4.76	5.16	0.8				•		•								•	•	•								
	CNMG120412-HK	12.9	12.7	4.76	5.16	1.2														•	•	•								
500	CNMG120416-HK	12.9	12.7	4.76	5.16	1.6														•	•	•								
	CNMG160612-HK	16.1	15.875	6.35	6.35	1.2				•										•	•	•								
	CNMG160616-HK	16.1	15.875	6.35	6.35	1.6														•	•	•								
	CNMG190612-HK	19.3	19.05	6.35	7.94	1.2														•	•	0								
	CNMG190616-HK	19.3	19.05	6.35	7.94	1.6														•		•								
. 1 1 1 1 1	CNMM190616-QH	19.3	19.05	6.35	7.94	1.6			(0		•	•																	
	CNMM190624-QH	19.3	19.05	6.35	7.94	2.4	•	0	•			•	•																	
	CNMM250924-QH	25.8	25.4	9.52	9.12	2.4	0	0	•	•		•	•																	
	CNMA120404	12.9	12.7	4.76	5.16	0.4														•	(•								
	CNMA120408	12.9	12.7	4.76	5.16	0.8														•	•	•								
	CNMA120412	12.9	12.7	4.76	5.16	1.2														•	•	•								
	CNMA120416	12.9	12.7	4.76	5.16	1.6														•	•	0								
	CNMA160612	16.1	15.875	6.35	6.35	1.2														•	•	•								
	CNMA160616	16.1	15.875	6.35	6.35	1.6														•	•	0								
	CNMA160620	16.1	15.875	6.35	6.35	2.0														•										
	CNMA190612	19.3	19.05	6.35	7.94	1.2														•	•	•								
	CNMA190616	19.3	19.05	6.35	7.94	1.6														•	•	•								
	CNMA190624	19.3	19.05	6.35	7.94	2.4														•	0	•								

$\mathsf{DN} \square \square$

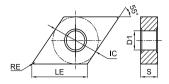

Ромб 55° с отверстием

					вмерь мм)	I							Тв	ерд	цы∈	: СПЛ	пав	ы с	пок	ры [.]	гие	М					Твер	дые авы	ло	етал- кера- иика
	Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1120	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GM3220	GM3225	GK1120 GK1120	GK1125	GST7115	GST7120	GST7130 GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
		DNMG110404-QF	11.6	9.525	4.76	3.81	0.4	•	•	•			0																	
		DNMG110408-QF	11.6	9.525	4.76	3.81	0.8	•	•	•	•		•																	
	A SY	DNMG150404-QF	15.5	12.7	4.76	5.16	0.4	•	•	• (•		0																•	0
		DNMG150408-QF	15.5	12.7	4.76	5.16	0.8	•	•	•			0																0	0
		DNMG150604-QF	15.5	12.7	6.35	5.16	0.4	•	•	•	•		•																	0
		DNMG150608-QF	15.5	12.7	6.35	5.16	0.8			()		•																	
		DNMG150404-TF	15.5	12.7	4.76	5.16	0.4																						•	0
Á	0/	DNMG150408-TF	15.5	12.7	4.76	5.16	0.8																						0	0
		DNMG110404-GF	11.6	9 525	4 76	3 81	0.4																							
		DNMG110408-GF		9.525									•																	
		DNMG150404-GF		12.7																										
		DNMG150408-GF											•																	
		DNMG150608-GF		12.7																										
		DNMG110404-SF	11.6	9.525	4.76	3.81	0.4												•						0					
		DNMG110408-SF	11.6	9.525	4.76	3.81	0.8												•											
		DNMG150404-SF	15.5	12.7	4.76	5.16	0.4												•						•					
ER		DNMG150408-SF	15.5	12.7	4.76	5.16	0.8												•						•					
		DNMG150604-SF	15.5	12.7	6.35	5.16	0.4												0						•					
		DNMG150608-SF	15.5	12.7	6.35	5.16	0.8												•						•					
		DNMG150404-YF	15.5	12.7	4.76	5.16	0.4												•	0										
		DNMG150408-YF	15.5	12.7	4.76	5.16	0.8												•	0										
		DNMG150604-YF	15.5	12.7	6.35	5.16	0.4												•	•										
		DNMG150608-YF	15.5	12.7	6.35	5.16	0.8												•	•										
	85-5-5-4	DNMG150404-SPL	15.5	12.7	4.76	5.16	0.4																							•
A		DNMG150408-SPL	15.5	12.7	4.76	5.16	0.8																							•
		DNMG150404-EL	15.5	12.7	4.76	5.16	0.4																•							
		DNMG150408-EL	15.5	12.7	4.76	5.16	0.8																•	•						
	19/1	DNMG150412-EL	15.5	12.7	4.76	5.16	1.2																•	•						
		DNMG150604-EL	15.5	12.7	6.35	5.16	0.4																•							
		DNMG150608-EL	15.5	12.7	6.35	5.16	0.8																•	•						
		DNMG150612-EL	15.5	12.7	6.35	5.16	1.2																•	•						

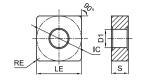


			вмерь мм)	I						Te	верд	ые	спл	іаві	ысп	юкр	ЫΤИ	1ем						вер,		Мет локе	ера-
Код заказа	LE	IC	S	D1	RE	GPT6110	GP16120	GP1105	GP1115	GP1225	GP1130	GP1135	GM1115	GM11230	GM3215	GM3220	GK1115	GK1120	GK1125	GST7115 GST7120	GST7130	GS3115	GNT/120	GN9120	GN9130		GP92TM
DNMG150404-SML	15.5	12.7	4.76	5.16	0.4															•							
DNMG150408-SML	15.5	12.7	4.76	5.16	0.8															•							
DNMG150604-SML	15.5	12.7	6.35	5.16	0.4															•							
DNMG150608-SML	15.5	12.7	6.35	5.16	0.8															• •)						
DNMG110404-QM	11.6	9.525	4.76	3.81	0.4	• ()	•	•)	0														•	
DNMG110408-QM	11.6	9.525	4.76	3.81	0.8	• (•	• ()	0					•										
DNMG110412-QM	11.6	9.525	4.76	3.81	1.2				•	C)	0							•								
DNMG150404-QM	15.5	12.7	4.76	5.16	0.4	• ()	0)	•					•									•	•
DNMG150408-QM	15.5	12.7	4.76	5.16	0.8	• (•	• ()	•					•										
DNMG150412-QM	15.5	12.7	4.76	5.16	1.2	• (• (•															
DNMG150604-QM	15.5	12.7	6.35	5.16	0.4	• (•	•)	0))
DNMG150608-QM	15.5	12.7	6.35	5.16	0.8	• (•	• (•	•	•				•									C)
DNMG150612-QM	15.5	12.7	6.35	5.16	1.2	• (•	• ()	0					0										
DNMG110404-GM	11.6	9.525	4.76	3.81	0.4)						•										
DNMG110408-GM	11.6	9.525	4.76	3.81	0.8				•)						•										
DNMG150404-GM	15.5	12.7	4.76	5.16	0.4				•)																
DNMG150408-GM	15.5	12.7	4.76	5.16	0.8				0)																
DNMG150412-GM	15.5	12.7	4.76	5.16	1.2				•	•)																
DNMG150604-GM	15.5	12.7	6.35	5.16	0.4				0)																
DNMG150608-GM	15.5	12.7	6.35	5.16	0.8				•)																
DNMG150612-GM	15.5	12.7	6.35	5.16	1.2				0)																
DNMG150616-GM	15.5	12.7	6.35	5.16	1.6					•																	
DNMG150404R-SV	15.5	12.7	4.76	5.16	0.4																					C)
DNMG150404L-SV	15.5	12.7	4.76	5.16	0.4																					•	•
DNMG150604R-SV	15.5	12.7	6.35	5.16	0.4)		•														
DNMG150604L-SV	15.5	12.7	6.35	5.16	0.4					•)		•													•	•
DNMG150608R-SV	15.5	12.7	6.35	5.16	0.8)
DNMG150608L-SV	15.5	12.7	6.35	5.16	0.8					•)		•														
DNMG110404-SM	11.6	9.525	4.76	3.81	0.4											• •											
DNMG110408-SM	11.6	9.525	4.76	3.81	0.8								•		•	•											
DNMG110412-SM	11.6	9.525	4.76	3.81	1.2											•											
DNMG150404-SM	15.5	12.7	4.76	5.16	0.4								C) C	•	• •)										
DNMG150408-SM	15.5	12.7	4.76	5.16	0.8								•)	• •											
DNMG150604-SM	15.5	12.7	6.35	5.16	0.4										0	0											
DNMG150608-SM	15.5	12.7	6.35	5.16	0.8								•		•	• •)										
DNMG150612-SM	15.5	12.7	6.35	5.16	1.2) C)	C)										

 $\mathsf{DN} \square \square$


Ромб 55° с отверстием

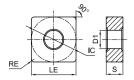
			змерь (мм)	I							Тве	ерді	ые	спл	авь	ı C I	ток	фы	ти	ем							ерді ілав		лок	тал- ера- ика
Код заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GP1135	GM1115	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115 GST7120	0211120	GS1/130 GS3115	GNT7120	GN9110	GN9120	GN9130	GP31TM	GP911M
DNMG110404-TP	11.6	9.525	4.76	3.81	0.4																							(•	
DNMG150404-TP	15.5	12.7	4.76	5.16	0.4																							•	•	
DNMG150408-TP	15.5	12.7	4.76	5.16	0.8																							(• ()
DNMG150604-TP	15.5	12.7	6.35	5.16	0.4																							(•	D
DNMG150608-TP	15.5	12.7	6.35	5.16	0.8																							-	•	
DNMG150404R -TS	15.5	12.7	6.35	5.16	0.4																								•	D
DNMG150404L -TS	15.5	12.7	6.35	5.16	0.4																							-	•	D
DNMG150408R -TS	15.5	12.7	6.35	5.16	0.8																								•)
DNMG150408L -TS	15.5	12.7	6.35	5.16	0.8																							-	•	
DNMG110404-LM	11.6	9.525	4.76	3.81	0.4									• (0	0	•	•												
DNMG110408-LM	11.6	9.525	4.76	3.81	0.8									•		•	•	•												
DNMG150404-LM	15.5	12.7	4.76	5.16	0.4									• (0	0	•	•												
DNMG150408-LM	15.5	12.7	4.76	5.16	0.8									•		•	•	•												
DNMG150412-LM	15.5	12.7	4.76	5.16	1.2									0		0		0												
DNMG150604-LM	15.5	12.7	6.35	5.16	0.4									•	•	•	•	•												
DNMG150608-LM	15.5	12.7	6.35	5.16	0.8									• (0	0	•	•												
DNMG150612-LM	15.5	12.7	6.35	5.16	1.2									0		•	•	0												
DNMG150408-EM	15.5	12.7	4.76	5.16	0.8																	• •	•							
DNMG150412-EM	15.5	12.7	4.76	5.16	1.2																-	• •	•							
DNMG150608-EM	15.5	12.7	6.35	5.16	0.8																	• •	•							
DNMG150612-EM	15.5	12.7	6.35	5.16	1.2																-	• •	•							
DNMG150408-SMM	15.5	12.7	4.76	5.16	0.8																	• •) ()						
DNMG150608-SMM	15.5	12.7	6.35	5.16	0.8																	• •)						
DNMX150408-WMV	15.5	12.7	4.76	5.16	0.8														•	(O									
DNMX150412-WMV	15.5	12.7	4.76	5.16	1.2														•)									
DNMX150608-WMV	15.5	12.7	6.35	5.16	0.8														0	()									
DNMX150612-WMV	15.5	12.7	6.35	5.16	1.2														0	•										



				змерь (мм)	I							Твє	ердь	ые	СПЛ	іавь	ы С	ПОН	φь	ІТИ	ем							ерд плаі		ЛОІ	етал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP 10130	GP1115	GP1120	GP1225	GP1130	GP1135	GM1115	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	6517120	GST7130	CNIT7130	GN9110	GN9120	GN9130	GP31TM	GP91TM GP92TM
	DNMG150404-MK	15.5	12.7	4.76	5.16	0.4														•	•										
	DNMG150408-MK	15.5	12.7	4.76	5.16	0.8														•	•										
	DNMG150412-MK	15.5	12.7	4.76	5.16	1.2														•	•										
frank mint	DNMG150604-MK	15.5	12.7	6.35	5.16	0.4														•	•										
	DNMG150608-MK	15.5	12.7	6.35	5.16	0.8														•	•										
	DNMG150612-MK	15.5	12.7	6.35	5.16	1.2															•										
	DNMG150404-UK	15.5	12.7	4.76	5.16	0.4														•		•									
	DNMG150408-UK	15.5	12.7	4.76	5.16	0.8														•	•	•									
	DNMG150412-UK	15.5	12.7	4.76	5.16	1.2														•		0									
	DNMG150604-UK	15.5	12.7	6.35	5.16	0.4														•	0	•									
	DNMG150608-UK	15.5	12.7	6.35	5.16	0.8														•	•	•									
	DNMG150612-UK	15.5	12.7	6.35	5.16	1.2														•	0	0									
	DNMG150616-UK	15.5	12.7	6.35	5.16	1.6														•		•									
	DNMG150408-LR	15.5	12.7	4.76	5.16	0.8									•			0	•												
	DNMG150412-LR	15.5	12.7	4.76	5.16	1.2									•			•	•												
	DNMG150608-LR	15.5	12.7	6.35	5.16	0.8									•				•												
	DNMG150612-LR	15.5	12.7	6.35	5.16	1.2													0												
	DNMG150408-QR	15.5	12.7	4.76	5.16	0.8	•	•				0																			
1502-00	DNMG150412-QR	15.5	12.7	4.76	5.16	1.2	0	• ()			0																			
	DNMG150608-QR	15.5	12.7	6.35	5.16	0.8	•	•		С)	•	•	•																	
- , 3 3, 3,	DNMG150612-QR	15.5	12.7	6.35	5.16	1.2	•	•		•)	•	-	•																	
	DNMG150616-QR	15.5	12.7	6.35	5.16	1.6	•	•		•)	•	•	•																	
	DNMG150408-HK	15.5	12.7	4.76	5.16	0.8														•	•	0									
	DNMG150412-HK	15.5	12.7	4.76	5.16	1.2														•	•	•									
lin onil	DNMG150608-HK	15.5	12.7	6.35	5.16	0.8														•	•	•									
	DNMG150612-HK	15.5	12.7	6.35	5.16	1.2														•	•	•									
	DNMA150404	15.5	12.7	4.76	5.16	0.4														•		•									
	DNMA150408	15.5	12.7	4.76	5.16	0.8														•	•	•									
	DNMA150412	15.5	12.7	4.76	5.16	1.2														•	0	0									
	DNMA150416	15.5	12.7	4.76	5.16	1.6														•		•									
	DNMA150604	15.5	12.7	6.35	5.16	0.4														0		•									
	DNMA150608	15.5	12.7	6.35	5.16	0.8														•	•	•									
	DNMA150612	15.5	12.7	6.35	5.16	1.2														•	•	•									

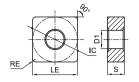
SN

Квадрат 90° с отверстием

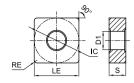


				меры мм)							Tı	вер	дые	: СП.	лав	ы с	ПО	крь	ιτи	ем						Твер спл		ло	етал- кера- иика
Код	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6130	GP1105	GP1115	GP1120	GP 1223	GP1135	GM1115	GM1125	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9130	GP31TM	GP91TM GP92TM
	SNMG090304-QF	9.525	9.525	3.18	3.81	0.4)																	
	SNMG090308-QF	9.525	9.525	3.18	3.81	0.8)																	
500	SNMG120404-QF	12.7	12.7	4.76	5.16	0.4	0	•)	0)																	0
	SNMG120408-QF	12.7	12.7	4.76	5.16	0.8	• •)	•	•)																	•
	SNMG120404-GF	12.7	12.7	4.76	5.16	0.4				0																			
	SNMG120408-GF	12.7	12.7	4.76	5.16	0.8				0																			
	SNMG120404-SF	12.7	12.7	4.76	5 16	0.4																							
	SNMG120404-31																							•					
	3111110120100 31	12.1	12.1	4.10	5.10	0.0																							
	SNMG120404-YF	12.7	12.7	4.76	5.16	0.4											•	•											
	SNMG120408-YF	12.7	12.7	4.76	5.16	0.8											•	•											
	SNMG090304-QM	9.525	9.525	3.18	3.81	0.4				0)	0																
	SNMG090308-QM	9.525	9.525	3.18	3.81	0.8				0	•		0																
	SNMG120404-QM	12.7	12.7	4.76	5.16	0.4	0	•)	0	0		•																
	SNMG120408-QM	12.7	12.7	4.76	5.16	0.8	• •	•	•	•	•		•																
	SNMG120412-QM	12.7	12.7	4.76	5.16	1.2	• •	•	0	•			•																
	SNMG120416-QM	12.7	12.7	4.76	5.16	1.6	•	•	•		•		0																
	SNMG150608-QM	15.875	15.875	6.35	6.35	0.8	0	0)	0)	0																
	SNMG150612-QM	15.875	15.875	6.35	6.35	1.2	• •	•	•	0			0																
	SNMG190612-QM	19.05	19.05	6.35	7.94	1.2	•)	0	0	_																		
	SNMG090304-GM	9.525	9.525	3.18	3.81	0.4)																	
	SNMG090308-GM	9.525	9.525	3.18	3.81	0.8)																	
	SNMG120404-GM	12.7	12.7	4.76	5.16	0.4																							
	SNMG120408-GM	12.7	12.7	4.76	5.16	0.8				0	•																		
	SNMG120412-GM	12.7	12.7	4.76	5.16	1.2				•																			
(colins)	SNMG120416-GM	12.7	12.7	4.76	5.16	1.6					•																		
	SNMG150608-GM																												
	SNMG150612-GM					-																							
	SNMG190612-GM																												
	SNMG190616-GM	19.05	19.05	6.35	7.94	1.6					()																	

SN

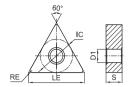

Квадрат 90° с отверстием

				меры им)							7	Гве	рды	ıe cı	пла	ВЫ	с п	окр	ЫТІ	ием							рдые 1авы	ло	етал- кера- шка
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP1105	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GK1115	GK1120	GK1125	GST7115	GST7120	GST7130 GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
	SNMG120404R-SV	12.7	12.7	4.76	5.16	0.4						•																	0
	SNMG120408R-SV	12.7	12.7	4.76	5.16	0.8						•																	•
	SNMG120408L-SV	12.7	12.7	4.76	5.16	0.8						•																	0
	SNMG090304-SM	9.525	9.525	3.18	3.81	0.4									•	0	•	•											
	SNMG120404-SM	12.7	12.7	4.76	5.16	0.4									•	•	•												
	SNMG120408-SM	12.7	12.7	4.76	5.16	0.8								•	•	•	•							•)			•	
	SNMG120412-SM	12.7	12.7	4.76	5.16	1.2									•	0	•												
	SNMG120416-SM	12.7	12.7	4.76	5.16	1.6									•	•	0												
	SNMG150608-SM	15.875	15.875	6.35	6.35	0.8											•							•)				
	SNMG150612-SM	15.875	15.875	6.35	6.35	1.2											0												
	SNMG150616-SM	15.875	15.875	6.35	6.35	1.6									•		•												
	SNMG190612-SM	19.05	19.05	6.35	7.94	1.2									0	0	•												
	SNMG190616-SM	19.05	19.05	6.35	7.94	1.6									•	0	•												
23334	SNMG120404-TP	12.7	12.7	4.76	5.16	0.4																							•
	SNMG120408-TP	12.7	12.7	4.76	5.16	0.8																							•


CNI

Квадрат 90° с отверстием

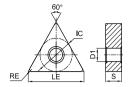
				меры мм)								Тв	ерд	цые	СП	лав	Ы (с по	окр	ЫΤ	ием						Тве	рдь	ie ,	Мета юке мин	ра-
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GPIIIS	GP1125	GP1130	GP1135	GM11115	GM1125	GM1230	GM3215	GM3220	GK1115	GK1120	GK1125	GST7115	GST7130	GS3115	GNT7120	GN9110	GN9120	GN9130	GP91TM	GP92TM
tooperal	SNMG120404-LM	12.7	12.7	4.76	5.16	0.4										() (•													
	SNMG120408-LM	12.7	12.7	4.76	5.16	0.8										•		•													
Port	SNMG120412-LM	12.7	12.7	4.76	5.16	1.2									•		() (
The same of	SNMG120404-EM	12.7	12.7	4.76	5.16	0.4																	•								
	SNMG120408-EM	12.7	12.7	4.76	5.16	0.8																	•	•							
	SNMG120412-EM	12.7	12.7	4.76	5.16	1.2																	• •	•							
	SNMG120408-SMM	12.7	12.7	4.76	5.16	0.8																	• •	0							
	SNMG120412-SMM	12.7	12.7	4.76	5.16	1.2																	• 0	0							
	SNMG120404-MK	12.7	12.7	4.76	5.16	0.4															•										
	SNMG120408-MK	12.7	12.7	4.76	5.16	0.8														•	•										
	SNMG120412-MK	12.7	12.7	4.76	5.16	1.2														•	•										
	SNMG120408-UK	12.7	12.7	4.76	5.16	0.8						0								•	•	•									
	SNMG120412-UK	12.7	12.7	4.76	5.16	1.2														•	•	•									
	SNMG150412-UK	15.875	15.875	4.76	6.35	1.2														С		0									
	SNMG150608-UK	15.875	15.875	6.35	6.35	0.8																									
	SNMG150612-UK	15.875	15.875	6.35	6.35	1.2														•	0	•									
	SNMG150616-UK	15.875	15.875	6.35	6.35	1.6														С		0									
	SNMG190612-UK	19.05	19.05	6.35	7.94	1.2														•	0	0									
	SNMG190616-UK	19.05	19.05	6.35	7.94	1.6														С	0	0									
	SNMG120408-LR	12.7	12.7	4.76	5.16	0.8																									
(VIII)	SNMG120412-LR	12.7	12.7	4.76	5.16	1.2									•			•)											
	SNMG150608-LR	15.875	15.875	6.35	6.35	0.8													•												
State May	SNMG150612-LR	15.875	15.875	6.35	6.35	1.2																									
	SNMG190612-LR	19.05	19.05	6.35	7.94	1.2									•																
	SNMG190616-LR	19.05	19.05	6.35	7.94	1.6									•																



				меры им)								Тве	ерд	цые (СП	лав	ы с	пс	кр	ЫΤИ	1ем	I						ерді ілав			гал- ера- іка
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GP1135	GMIIIS	GM1125	GM1230	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	GST7120	GST7130	GNT7120	GN9110	GN9120	GN9130	GP311M	GP92TM
	SNMG120408-QR	12.7	12.7	4.76	5.16	0.8	•	• (•			•		•																	
	SNMG120412-QR	12.7	12.7	4.76	5.16	1.2	•	• (•			0		•																	
	SNMG120416-QR	12.7	12.7	4.76	5.16	1.6	0	• ()			0		•																	
	SNMG150608-QR	15.875	15.875	6.35	6.35	0.8						0		•																	
	SNMG150612-QR	15.875	15.875	6.35	6.35	1.2						•		•																	
	SNMG150616-QR	15.875	15.875	6.35	6.35	1.6						0		•																	
	SNMG150624-QR	15.875	15.875	6.35	6.35	2.4						•																			
	SNMG190608-QR	19.05	19.05	6.35	7.94	0.8						0																			
	SNMG190612-QR	19.05	19.05	6.35	7.94	1.2)		•		•																	
	SNMG190616-QR	19.05	19.05	6.35	7.94	1.6	•	•	•			•		•																	
	SNMG190624-QR	19.05	19.05	6.35	7.94	2.4	0	•	•			0																			
	SNMG250724-QR	25.4	25.4	7.94	9.21	2.4		•				0																			
	SNMG250924-QR	25.4	25.4	9.52	9.21	2.4		•				0																			
	SNMG120408-HK	12.7	12.7	4.76	5.16	0.8														•	•	•									
	SNMG120412-HK	12.7	12.7	4.76	5.16	1.2														•	•	•									
5	SNMG120416-HK	12.7	12.7	4.76	5.16	1.6														•	•	•									
	SNMG150612-HK	15.875	15.875	6.35	6.35	1.2														•	0	•									
	SNMG150616-HK	15.875	15.875	6.35	6.35	1.6														0		0									
	SNMG190612-HK	19.05	19.05	6.35	7.94	1.2														•	0	•									
	SNMG190616-HK	19.05	19.05	6.35	7.94	1.6														0	0	•									
	SNMM150616-QH	15.875	15.875	6.35	7.94	1.6		•	() (
	SNMM190612-QH	19.05	19.05	6.35	7.94	1.2		•	•			0																			
	SNMM190616-QH	19.05	19.05	6.35	7.94	1.6						•		•								_									
	SNMM190624-QH	19.05	19.05	6.35	7.94	2.4	•	•				•		•																	
	SNMM250724-QH	25.4	25.4	7.94	9.12	2.4			•			•		•																	
	SNMM250924-QH	25.4	25.4	9.52	9.12	2.4	0	•)	•		•																	
	SNMM250932-QH	25.4	25.4	9.52	9.12	3.2						0		•																	
	SNMA090308	9.525	9.525	3.18	3.81	0.8														•											
	SNMA120404	12.7	12.7	4.76	5.16	0.4														•		•									
	SNMA120408	12.7	12.7	4.76	5.16	0.8														•	•	•									
	SNMA120412	12.7	12.7	4.76	5.16	1.2														•	•	•									
	SNMA120416	12.7	12.7	4.76	5.16	1.6														•	0	•									
	SNMA190612	19.05	19.05	6.35	7.94	1.2														•	0	0									
	SNMA190616	19.05	19.05	6.35	7.94	1.6														•	0	0									
	SNMA190632	19.05	19.05	6.35	7.94	3.2														0											

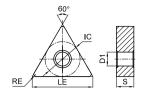
$\mathsf{TN} \, \square \, \square$

Треугольник 60° с отверстием



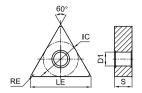
				меры мм)								Тве	ердь	ые	спл	аві	ы с	ПО	крь	тие	М						вер спла	дые авы	лок	тал- кера- ика
Код	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1105	GP1120	GP1225	GP1130	GP1135	GM11125	GM1230	GM3215	GM3220	GM3225	GK1115	GKIIZU	GST7115	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9130	GP31TM	GP911M GP92TM
A	TNMG160404-QF	16.5	9.525	4.76	3.81	0.4	•	•		•	•	•																	• (
	TNMG160408-QF	16.5	9.525	4.76	3.81	0.8	•	•		•	•	•																	0	
	TNMG220404-QF	22	12.7	4.76	5.16	0.4	•	0	•	•		0																		
	TNMG160404-TF	16.5	9.525	4.76	3.81	0.4																							• (<u> </u>
	TNMG160408-TF	16.5	9.525	4.76	3.81	8.0																							0)
400																														
	TNMG160404-GF	16.5	9.525	4.76	3.81	0.4						•																		
GR	TNMG160408-GF	16.5	9.525	4.76	3.81	0.8						0																		
	TNMG220404-GF	22	12.7	4.76	5.16	0.4																								
	TNMG160404-SF	16.5	9.525	4.76	3.81	0.4												•	•						•					
	TNMG160408-SF	16.5	9.525	4.76	3.81	0.8												•							•					
and a																														
	TNMG160404-YF	16.5	9.525	4.76	3.81	0.4												•	•											
	TNMG160408-YF	16.5	9.525	4.76	3.81	0.8												•	•											
A	TNMG160404-SPL	16.5	9.525	4.76	3.81	0.4																								•
	TNMG160408-SPL	16.5	9.525	4.76	3.81	8.0																								•
has																														
	TNMG110304-QM	11	6.35	3.18	2.26	0.4)	0																		
	TNMG110308-QM	11	6.35	3.18	2.26	0.8)	0																		
	TNMG160404-QM	16.5	9.525	4.76	3.81	0.4	•	•	•	• •	•	•		•)				• (-	D
	TNMG160408-QM	16.5	9.525	4.76	3.81	0.8	•	•		•	•	•	•	•	•)				•									0	D
200	TNMG160412-QM	16.5	9.525	4.76	3.81	1.2	•	•		•	•	•	• (•										
	TNMG220408-QM	22	12.7	4.76	5.16	0.8	•	•				•																		
	TNMG220412-QM	22	12.7	4.76	5.16	1.2	0	•)	•		•																		
	TNMG220416-QM	22	12.7	4.76	5.16	1.6	•)	•																		

Треугольник 60° с отверстием

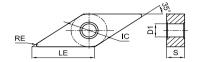


				меры мм)								Te	зер	ды	е сг	ілаі	ВЫ	с п	οкן	ЭЫТ	ие	М						Гвер <i>і</i> спла		ЛОН	тал- кера ика	1 -
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1120	GK1125	GST7115	GST7120	GST7130	653115	GNT/120	GN9110 GN9120	GN9130	GP31TM	GP91TM	GP92TM
	TNMG160308-GM	16.5	9.525	3.18	3.81	0.8)																			_
	TNMG160312-GM	16.5	9.525	3.18	3.81	1.2						•)																			
	TNMG160404-GM	16.5	9.525	4.76	3.81	0.4				•																						
	TNMG160408-GM	16.5	9.525	4.76	3.81	0.8						•)																			
	TNMG160412-GM	16.5	9.525	4.76	3.81	1.2				()	•)																			
	TNMG220404-GM	22	12.7	4.76	5.16	0.4						•)																			
	TNMG220408-GM	22	12.7	4.76	5.16	0.8				()	•																				
	TNMG220412-GM	22	12.7	4.76	5.16	0.8				()	C)																			
	TNMG160404R-SV	16.5	9.525	4.76	3.81	0.4				•		•				•														•	•	
	TNMG160404L-SV	16.5	9.525	4.76	3.81	0.4				•		•				0														•	•	
	TNMG160408R-SV	16.5	9.525	4.76	3.81	0.8)	•				•														•	•	
	TNMG160408L-SV	16.5	9.525	4.76	3.81	0.8						•				0														•	0	
	TNMG160404-SM	16.5	9.525	4.76	3.81	0.4									•	•	•	•														
	TNMG160408-SM	16.5	9.525	4.76	3.81	0.8									•	•	•	•							•							
	TNMG160412-SM	16.5	9.525	4.76	3.81	1.2									0	0	0		_ (
	TNMG220408-SM	22	12.7	4.76	5.16	0.8										•	•		•													
	TNMG220412-SM	22	12.7	4.76	5.16	1.2) (
	TNMG220416-SM	22	12.7	4.76	5.16	1.6											0															
	TNMG160404-TP	16.5	9.525	4.76	3.81	0.4																								•	•	
0	TNMG160408-TP	16.5	9.525	4.76	3.81	0.8																								•	0	
	TNMG160404R-TS																													•	•	
	TNMG160404L-TS																													•	•	
	TNMG160408R-TS																													•	•	
	TNMG160408L-TS	16.5	9.525	4.76	3.81	0.8																								•	•	

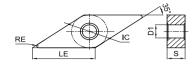
Треугольник 60° с отверстием



				меры им)							-	Тве	рды	ie ci	пла	вы (с по	крь	ыти	ем						вер		ЛО	етал- кера- иика
Код	д заказа	LE	IC	S	D1	RE	GPT6110	GP16120	GP16130	GP1115	GP1120	GP1225	GP1130 GP1135	GM1115	GM1125	GM1230	GM3225	GM3225	GK1115	GK1120	GK1125	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9130	GP31TM	GP91TM GP92TM
	TNMG160404-LM	16.5	9.525	4.76	3.81	0.4								•	0	• ()	•											
	TNMG160408-LM	16.5	9.525	4.76	3.81	0.8								•	•	•	•	•											
	TNMG160412-LM	16.5	9.525	4.76	3.81	1.2											•	•											
	TNMG160408-EM	16.5	9.525	4.76	3.81	0.8															•								
	TNMG160412-EM	16.5	9.525	4.76	3.81	1.2															•								
	TNMX160408-WMV	16.5	9.525	4 76	3.81	0.8															 O								
	TNMX160412-WMV																		•		0								
	11110/100 112 11111	10.0	3.323		5.01																								
	TNMG160404-MK	16.5	9.525	4.76	3.81	0.4													•	•									
	TNMG160408-MK	16.5	9.525	4.76	3.81	0.8													•	•									
	TNMG160412-MK	16.5	9.525	4.76	3.81	1.2														•									
	TNMG160404-UK	16.5	9.525	4.76	3.81	0.4													•	•	•								
	TNMG160408-UK	16.5	9.525	4.76	3.81	0.8													•	•	•								
	TNMG160412-UK	16.5	9.525	4.76	3.81	1.2													•	(0								
	TNMG160416-UK	16.5	9.525	4.76	3.81	1.6													•	0	0								
	TNMG220408-UK	22	12.7	4.76	5.16	0.8													•	(0								
	TNMG220412-UK	22	12.7	4.76	5.16	1.2													•										
	TNMG220416-UK	22	12.7	4.76	5.16	1.6													0	(
	TNMG160408-LR	16.5	9.525	4.76	3.81	0.8								•)		•	•											
	TNMG160412-LR	16.5	9.525	4.76	3.81	1.2											•	•											
	TNMG220408-LR	22	12.7	4.76	5.16	0.8											•	•											
	TNMG160408-QR	16.5	9.525	4.76	3.81	0.8						0	•																
	TNMG160412-QR	16.5	9.525	4.76	3.81	1.2	0					0	•																
	TNMG220408-QR	22	12.7	4.76	5.16	0.8	0	•				•																	
	TNMG220412-QR	22	12.7	4.76	5.16	1.2	0	•	•			•	•																
	TNMG220416-QR	22	12.7	4.76	5.16	1.6	• ()				•) C)															
-,-,-	TNMG270608-QR	27.5	15.875	6.35	6.35	0.8						0																	
	TNMG270612-QR	27.5	15.875	6.35	6.35	1.2)				•	•																
	TNMG270616-QR	27.5	15.875	6.35	6.35	1.6							•									Ī							
	TNMG330924-QR	33	19.05	9.52	7.94	2.4						0																	

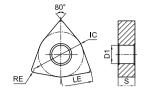


Треугольник 60° с отверстием



				меры мм)	I							Tı	вер	ды	e c	пла	ВЫ	сп	окі	ЭЫТ	гиє	M							одые авы	ЛС	етал- жера- иика
Кс	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1223	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1113	GK1125	GST7115	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
	TNMG160408-HK	16.5	9.525	4.76	3.81	0.8)								
	TNMG160412-HK	16.5	9.525	4.76	3.81	1.2)								
	TNMG220408-HK	22	12.7	4.76	5.16	0.8																									
	TNMG220412-HK	22	12.7	4.76	5.16	1.2)								
, ,	TNMG220416-HK	22	12.7	4.76	5.16	1.6														•)								
	TNMG270612-HK	27.5	15.875	6.35	6.35	1.2														•		•)								
	TNMG270616-HK	27.5	15.875	6.35	6.35	1.6														•		•									
	TNMA110304	11	6.35	3.18	2.26	0.4																C)								
	TNMA160308	16.5	9.525	3.18	3.81	0.8																•									
	TNMA160404	16.5	9.525	4.76	3.81	0.4														•		•)								
	TNMA160408	16.5	9.525	4.76	3.81	0.8														•)								
	TNMA160412	16.5	9.525	4.76	3.81	1.2														•)								
	TNMA160416	16.5	9.525	4.76	3.81	1.6)								
	TNMA220404	22	12.7	4.76	5.16	0.4																•									
	TNMA220408	22	12.7	4.76	5.16	0.8))								
	TNMA220412	22	12.7	4.76	5.16	1.2)	C)								
	TNMA220416	22	12.7	4.76	5.16	1.6)	•)								

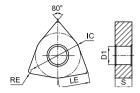
			меры им)							Тве	ердь	ые	спл	іавь	ol C I	пок	ры	тие	М						рдые лавы	Э Д	Іетал- окера- мика
Код заказа	LE	IC	S	D1	RE	GPT6110 GPT6120	GPT6130	GP1105	GP1115	GP1225	GP1130	GP1135	GM1115	GM1230	GM3215	GM3220	GM3225	GK1115	GK1125	GST7115	GST7120	GST7130 GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
VNMG160402-QF	16.6	9.525	4.76	3.81	0.2		•			•																	
VNMG160404-QF	16.6	9.525	4.76	3.81	0.2	• •	•	•	• •	•							(0								•	0
VNMG160408-QF	16.6	9.525	4.76	3.81	0.2	• •	•	•	• 0	•								•								•	0
VNMG220408-QF	22.1	12.7	4.76	5.16	0.8			(•	0																	
VNMG160404-TF	16.6	9.525	4.76	3.81	0.4																					•	0
VNMG160408-TF	16.6	9.525	4.76	3.81	0.8																					0	
VNMG160404-GF	16.6	9.525	4.76	3.81	0.4			_	•	0																	
VNMG160408-GF								(•	•							-	•									
VNMG220404-GF	22.1	12.7	4.76	5.16	0.4			(5																		
VNMG160404-SF	16.6	9.525	4.76	3.81	0.4											•	•					•					
VNMG160408-SF	16.6	9.525	4.76	3.81	0.8											•						•					
VNMG160404-YF		9.525														•	•										
VNMG160408-YF	16.6	9.525	4.76	3.81	8.0											•	•										
VNMG160404-SPL																											•
VNMG160408-SPL	16.6	9.525	4.76	3.81	0.8																						•
VNMG160404-EL	16.6	9.525	4.76	3.81	0.4															•							
VNMG160408-EL	16.6	9.525	4.76	3.81	0.8															•	•						
VNMG160412-EL	16.6	9.525	4.76	3.81	1.2															•	•						
VNMG160404-SML	16.6	9.525	4.76	3.81	0.4															•							
VNMG160408-SML	16.6	9.525	4.76	3.81	0.8															•							
VNMG160412-SML	16.6	9.525	4.76	3.81	1.2															•							
VNMG160404-QM	16.6	9.525	4.76	3.81	0.4	• •	•	(• •	•	• (•						•								•	•
VNMG160408-QM	16.6	9.525	4.76	3.81	0.8	• •	•	•	•	•	•	•					(•									0
VNMG160412-QM	16.6	9.525	4.76	3.81	1.2	• •	•		•	•		•					-	•									


lacktriangle В наличии \bigcirc Доступно по запросу

			меры им)							-	Гве	ерді	ые	СПЛ	пав	ы	спо	окр	ЭЫΤ	иеі	М						верд		ЛОН	тал- кера- ика
Код заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GP1135	GM1115	GM1125	GMIZSO	GINSZID GM3220	GM3220	GK1115	GK1120	GK1125	GST7115	GST7120	GST7130	GS3115	GN1/120	GN9120	GN9130	GP31TM	GP911M GP92TM
VNMG160404-GM	16.6	9.525	4.76	3.81	0.4				0)	•										•									
VNMG160408-GM	16.6	9.525	4.76	3.81	0.8				•)	•																			
VNMG160412-GM	16.6	9.525	4.76	3.81	1.2				•)	•																			
VNMG160404-SM	16.6	9.525	4.76	3.81	0.4									•))		•											
VNMG160408-SM	16.6	9.525	4.76	3.81	0.8									0	0 0)	•)											
		9.525																											•	•
VNMG160408-TP	16.6	9.525	4.76	3.81	0.8																								•	
VNMG160404-LM	16.6	9.525	4.76	3.81	0.4									• (• •) (•											
VNMG160408-LM	16.6	9.525	4.76	3.81	0.8									• •																
VNMG160408-EM	16.6	9.525	4.76	3.81	0.8																	•	•	•						
VNMG160412-EM	16.6	9.525	4.76	3.81	1.2																	•	•	•						
VNMG160408-SMM	16.6	9.525	4.76	3.81	0.8																	•	•	•						
VNMG160412-SMM	16.6	9.525	4.76	3.81	1.2																	•								
VNMG160404-MK	16.6	9.525	4.76	3.81	0.4															•)									
VNMG160408-MK	16.6	9.525	4.76	3.81	0.8														•	•)									
VNMG160412-MK	16.6	9.525	4.76	3.81	1.2															•	,									
VNMG160404-UK	16.6	9.525	4.76	3.81	0.4														•	•	•									
VNMG160408-UK	16.6	9.525	4.76	3.81	0.8														•	•	•									
VNMG160412-UK	16.6	9.525	4.76	3.81	1.2														•) C	•									
VNMG160408-HK	16.6	9.525	4.76	3.81	0.8														•	•	0									
VNMG160412-HK	16.6	9.525	4.76	3.81	1.2															•)									

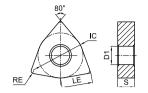
WN .

Треугольник 80° с отверстием



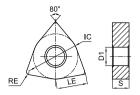
				меры мм)								Тве	рдь	ле с	:пла	авь	ІСГ	юкр	ЭЫΊ	ием	4						верд :пла		лоі	етал- кера- ика	
Код	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP1105	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1120	GK1125	GST7115	GST7120	GST7130	G33113	GN9110	GN9120	GN9130	GP31TM	GP91TM GP92TM	1
	WNMG060404-QF	6.5	9.525	4.76	3.81	0.4	•	• •		0		•																			
250	WNMG060408-QF	6.5	9.525	4.76	3.81	0.8	•	•		0		•																			
SUS CO	WNMG080404-QF	8.7	12.7	4.76	5.16	0.4	•	•		•	•	•																	•	0_	
	WNMG080408-QF	8.7	12.7	4.76	5.16	0.8	•	• (•	•	•																	•	•	
	WNMG080404-TF	8.7	12.7	4.76	5.16	0.4																							•	•	
0	WNMG080408-TF	8.7	12.7	4.76	5.16	0.8																							0	•	
	WNMG06T304-GF	6.5	9.525	3.97	3.81	0.4				•		0																			
	WNMG06T308-GF		9.525			-				0		•																			Ī
GE	WNMG060404-GF	6.5	9.525	4.76	3.81	0.4				0																					
	WNMG060408-GF	6.5	9.525	4.76	3.81	0.8				0																					
	WNMG080404-GF	8.7	12.7	4.76	5.16	0.4				•		0																			
	WNMG080408-GF	8.7	12.7	4.76	5.16	0.8				•		•																			
	WNMG060404-SF	6.5	9.525	4.76	3.81	0.4												0													
	WNMG060408-SF	6.5	9.525	4.76	3.81	0.8												0													
	WNMG080404-SF	8.7	12.7	4.76	5.16	0.4												•													
	WNMG080408-SF	8.7	12.7	4.76	5.16	0.8												•													
	WNMG080404-YF	8.7	12.7	4.76	5.16	0.4												•													
	WNMG080408-YF	8.7	12.7	4.76	5.16	0.8												•													
	WNMG080404-SPL	8.7	12.7	4 76	5 16	0.4																								4	
	WNMG080404-SPL		12.7)
Es and																															
	WNMG080404-EL	8.7	12.7	4.76	5.16	0.4																•		0							
	WNMG080408-EL	8.7	12.7	4.76	5.16	0.8																•	•								
	WNMG080412-EL	8.7	12.7	4.76	5.16	1.2																•	•								
	WNMG080404-SML	8.7	12.7	4.76	5.16	0.4																•									1
D	WNMG080408-SML		12.7																			•	•								Ī
	WNMG080412-SML		12.7																			•	0								

WN \square


Треугольник 80° с отверстием

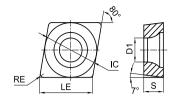
				меры им)							-	Гвеј	рды	ie c	пла	ВЫ	с по	окр	ыти	1ем						Твер спла		ЛО	етал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3225	GK1115	GK1120	GK1125	GST7120	GST7130	GS3115	07T/ INS	GN9110	GN9130	GP31TM	GP91TM GP92TM
	WNMG060404-QM	6.5	9.525	4.76	3.81	0.4	•	• •		0		•	•						•										
	WNMG060408-QM	6.5	9.525	4.76	3.81	0.8	•	• •		•	•	•	•																
	WNMG060412-QM	6.5	9.525	4.76	3.81	1.2	•	• •		0	0																		
	WNMG080404-QM	8.7	12.7	4.76	5.16	0.4	•	•		•	•	•			0				•										•
Marrie Married	WNMG080408-QM	8.7	12.7	4.76	5.16	0.8	•	• •	•	•	•	•	•		•				•									•	•
	WNMG080412-QM	8.7	12.7	4.76	5.16	1.2	•	•		•	•	•							•										
	WNMG080416-QM	8.7	12.7	4.76	5.16	1.6	•	• •	•	0		•	•																
	WNMG06T304-GM	6.5	9.525	3.97	3.81	0.4				0		•							•										
	WNMG06T308-GM	6.5	9.525	3.97	3.81	8.0				0	_	•								•									
	WNMG06T312-GM	6.5	9.525	3.97	3.81	1.2				0		•								0									
	WNMG060404-GM	6.5	9.525							0		•																	
	WNMG060408-GM	6.5	9.525							0		•																	
	WNMG080404-GM	8.7	12.7	4.76	5.16	0.4				•	_	•																	
	WNMG080408-GM	8.7	12.7							•		•							•										
	WNMG080412-GM	8.7	12.7			_				•		•																	
	WNMG080416-GM	8.7	12.7							•		•																	
	WNMG080408R-SV	8.7		4.76					•			•																	
	WNMG080408L-SV	8.7	12.7	4.76	5.16	0.8						•																	

Треугольник 80° с отверстием



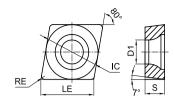
				меры мм)								Тв	ерд	ые	спл	тав	ы с	поі	кры	тиє	ем						Твер спла		лон	тал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115 GP1120	GP1225	GP1130	GP1135	GM1115	GM11250	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9130	GP31TM	GP91TM GP92TM
	WNMG06T304-SM	6.5	9.525	3.97	3.81	0.4								,					•											
	WNMG06T308-SM	6.5	9.525	3.97	3.81	0.8													•											
	WNMG060404-SM	6.5	9.525	4.76	3.81	0.4									0)		•											
	WNMG060408-SM	6.5	9.525	4.76	3.81	0.8									•		•		•											
	WNMG060412-SM	6.5	9.525	4.76	3.81	1.2									•)													
	WNMG080404-SM	8.7	12.7	4.76	5.16	0.4									0			•	•										•	•
	WNMG080408-SM	8.7	12.7	4.76	5.16	0.8									•		•	•	•						•				•	0
	WNMG080412-SM	8.7	12.7	4.76	5.16	1.2									0			•	•											
	WNMG080404-TP	8.7	12.7	4.76	5.16	0.4																							•	•
	WNMG080408-TP	8.7	12.7	4.76	5.16	0.8																							•	•
	WNMG06T304-LM	6.5	9.525	3.97	3.81	0.4													•											
	WNMG06T308-LM	6.5	9.525	3.97	3.81	0.8												0	•											
50	WNMG060404-LM	6.5	9.525	4.76	3.81	0.4									() (•	0	•											
50	WNMG060408-LM	6.5	9.525	4.76	3.81	0.8									(•		•											
	WNMG080404-LM	8.7	12.7	4.76	5.16	0.4									•		•	•	•											
	WNMG080408-LM	8.7	12.7	4.76	5.16	0.8									•		•	•	•						•					
	WNMG080412-LM	8.7	12.7	4.76	5.16	1.2									0			•	•											
	WNMG080408-EM	8.7	12.7	4.76	5.16	0.8																•		•						
	WNMG080412-EM	8.7	12.7	4.76	5.16	0.8																•	•	•						
	WNMG080408-SMM	8.7	12.7	4.76	5.16	0.8																•								
	WNMG080412-SMM	8.7	12.7	4.76	5.16	1.2)							
	WNMG080408-WMV	8.7	12.7	4.76	5.16	0.8														(•)								
	WNMG080412-WMV	8.7	12.7	4.76	5.16	1.2														(• ()								
	WNMG080404-MK	8.7	12.7	4.76	5.16	0.4														(•									
	WNMG080408-MK	8.7	12.7	4.76	5.16	0.8															• (
	WNMG080412-MK	8.7	12.7	4.76	5.16	1.2														(•					•				
	,																													

Треугольник 80° с отверстием

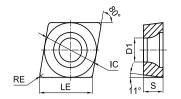


				меры мм)								Т	вер	ды	е сг	пла	вы	сп	окј	оыт	гие	М							одые авы	Л	1ет <i>а</i> океј мик	ра-
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1120	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1113	GK1125	GST7115	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM	GP92TM
	WNMG080404-UK	8.7	12.7	4.76	5.16	0.4														•												
	WNMG080408-UK	8.7	12.7	4.76	5.16	0.8)									
	WNMG080412-UK	8.7	12.7	4.76	5.16	1.2																•)									
	WNMG080408-LR	8.7	12.7	4.76	5.16	0.8									•				•	•												
	WNMG080412-LR	8.7	12.7	4.76	5.16	1.2									•		0		•	•												
	WNMG080408-QR	8.7	12.7	4.76	5.16	0.8	•	•	•	0	•			•)																	
	WNMG080412-QR	8.7	12.7	4.76	5.16	1.2	•	•	•	•	•	(•)																	
	WNMG080416-QR	8.7	12.7	4.76	5.16	1.6	•	•	•	•	•)	•																		
	WNMG06T308-HK	6.5	9.525	3.97	3.81	8.0														•												
	WNMG060408-HK	6.5	9.525	4.76	3.81	8.0																•										
Ser 10	WNMG080408-HK	8.7	12.7	4.76	5.16	0.8														•)									
	WNMG080412-HK	8.7	12.7	4.76	5.16	1.2														•												
	WNMA06T304	6.5	9.525	3.97	3.81	0.4														•												
	WNMA060404	6.5	9.525	4.76	3.81	0.4)									
	WNMA060408	6.5	9.525	4.76	3.81	8.0														•		•										
	WNMA080404	8.7	12.7																	•		•)									
	WNMA080408	8.7	12.7	4.76	5.16	8.0														•)									
	WNMA080412	8.7	12.7	4.76	5.16	1.2														•												
	WNMA080416	8.7	12.7	4.76	5.16	1.6														_)									

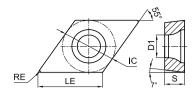
CC


Ромб 80° с отверстием

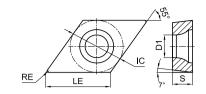
				меры мм)							-	Гве	рды	e c	пла	ВЫ	с пс	крі	ыти	ем						вер <i>ц</i> спла		ЛОН	тал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3225	GK1115	GK1120	GK1125 GST7115	GST7120	GST7130	GS3115	GNT7120	GN9120	GN9130	GP31TM	GP91TM GP92TM
	CCMT060202-MM	6.5	6.35	2.38	2.8	0.2	•	• (•	,		•	•			•							0	•
	CCMT060204-MM	6.5	6.35	2.38	2.8	0.4	•	•						•	,		•	•	•	•	•							•	•
	CCMT060208-MM	6.5	6.35	2.38	2.8	0.8	•	•									•	•	•	•		C)					•	<u> </u>
	CCMT09T302-MM	9.7	9.525	3.97	4.4	0.2	•	•									•	•			C)						•	•
	CCMT09T304-MM	9.7	9.525	3.97	4.4	0.4	•	•									•	•	•	•	•							•	•
	CCMT09T308-MM	9.7	9.525	3.97	4.4	0.8	•	•									•	•	•	•	•	•	•					0	•
	CCMT120404-MM	12.9	12.7	4.76	5.56	0.4	(•											•		•								
	CCMT120408-MM	12.9	12.7	4.76	5.56	0.8	•	•																					
FC 3-1	CCMT060204-FP	6.5	6.35	2.38	2.8	0.4								•					0									•	
	CCMT09T302-FP	9.7	9.525	3.97	4.4	0.2	0	0																					
	CCMT09T304-FP	9.7	9.525	3.97	4.4	0.4	0 (0					0			•		•		•							•	0
	CCMT09T308-FP	9.7	9.525	3.97	4.4	0.8								•)		C)	•		С)						0	
	CCMT060202-SPL	6.5	6.35	2.38	2.8	0.2																							•
	CCMT060204-SPL	6.5	6.35	2.38	2.8	0.4																							•
	CCMT09T302-SPL	9.7	9.525	3.97	4.4	0.2																							•
	CCMT09T304-SPL	9.7	9.525	3.97	4.4	0.4																							•
	CCMT09T308-SPL	9.7	9.525	3.97	4.4	0.8																							•
	CCMT060202-GP	6.5	6.35	2.38	2.8	0.2	•	()	0		•			0	0			•									•	
	CCMT060204-GP	6.5	6.35	2.38	2.8	0.4	• (•		•	•	•		•	•	•	•	•	•	0) 							•	•
	CCMT060208-GP	6.5	6.35	2.38	2.8	0.8	•	•		0		•			•	•		•	•	0	<u> </u>							0	<u> </u>
	CCMT09T302-GP	9.7	9.525	3.97	4.4	0.2	•)	•		•			•	•			•									0	C
	CCMT09T304-GP	9.7	9.525	3.97	4.4	0.4	•	•		•	•		•	•	•	•	•	•	•	•								•	
	CCMT09T308-GP	9.7	9.525	3.97	4.4	0.8	• (• (•	•	•	•	•	•	•) (•	•	• (0 (
	CCMT120404-GP	12.9		4.76)	•	•	•		•		•		•	•	0								0	
	CCMT120408-GP	12.9	12.7					•		•	•	•		•				•	•	• (0 (
	CCMT120412-GP	12.9	12.7				•			•		0			•	•			•	•									
	CCGT060202-GP	6.5	6.35															•											
	CCGT060204-GP	6.5																•											
	CCGT060208-GP	6.5	6.35																										
	CCGT09T302-GP	9.7	9.525																										
	CCGT09T304-GP	9.7	9.525 9.525															_											
	CCGT09T308-GP CCGT120404-GP	9.7	9.525																										
	CCGT120404-GP		12.7															0											
	CCG1120400-GF	12.3	12.1	7.10	5.50	0.0																							



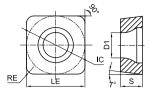
				меры мм)								Tı	вер	ды	e cı	пла	вы	СГ	101	фь	ІТИ	ем							верд		лоі	етал- кера- ика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1130	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	GS17120	GS17130	GNT7120	GN9110	GN9120	GN9130	GP31TM	GP91TM GP92TM
	CCMT060202-TP	6.5	6.35	2.38	2.8	0.2																									•	•
	CCMT060204-TP	6.5	6.35	2.38	2.8	0.4																									•	•
	CCMT060208-TP	6.5	6.35	2.38	2.8	0.8																									•	•
	CCMT09T302-TP	9.7	9.525	3.97	4.4	0.2																									•	•
	CCMT09T304-TP	9.7	9.525	3.97	4.4	0.4																									•	•
	CCMT09T308-TP	9.7	9.525	3.97	4.4	0.8																									•	•
	CCMT120404-TP	12.9	12.7	4.76	5.56	0.4																									•	•
	CCMT120408-TP	12.9	12.7	4.76	5.56	0.8																									•	•
	CCMT060204-KM	6.5	6.35	2.38	2.8	0.4															•	•	•									
	CCMT09T304-KM	9.7	9.525	3.97	4.4	0.4															•	•	•									
	CCMT09T308-KM	9.7	9.525	3.97	4.4	0.8															•	•	•									
	CCMT120404-KM	12.9	12.7	4.76	5.56	0.4															•											
	CCMT120408-KM	12.9	12.7	4.76	5.56	0.8															•	•	•									
	CCMT120412-KM	12.9	12.7	4.76	5.56	1.2															•	•	•									
	CCGX060202-AL	6.5	6.35	2.38	2.8	0.2																							•			
	CCGX060204-AL	6.5	6.35	2.38	2.8	0.4																					•	•	•	0		
	CCGX060208-AL	6.5	6.35	2.38	2.8	8.0																					•					
	CCGX09T302-AL	9.7	9.525	3.97	4.4	0.2																					•	С	•			
	CCGX09T304-AL	9.7	9.525	3.97	4.4	0.4																					•	О	•	•		
	CCGX09T308-AL	9.7	9.525	3.97	4.4	0.8																					•	C	•			
	CCGX120402-AL	12.9	12.7	4.76	5.5	0.2																					•	•				
	CCGX120404-AL	12.9	12.7	4.76	5.5	0.4																					•	С	•	0		
	CCGX120408-AL	12.9	12.7	4.76	5.5	0.8																						C	•	•		


Ромб 80° с отверстием

				меры мм)								Тве	ерд	ιые	сп	лаі	ЗЫ (с по	крі	ЫΤИ	ием							ерді ілав	Мет лок	ера-
Ко	д заказа	LE	IC	S	D1	RE	П	PT61	7 5	GP1115	PI	P1	P.1	GP1135	GM1115	GM1125	GM1230	GM3215	GM3225	K111	GK1120	GK1125	ST7	S1 /1	GS1/130	GNT7120	GN9110	1912	GP31TM	
	CPGT060204-GP	6.5	6.35	2.38	2.8	0.4													•											
	CPGT060208-GP	6.5	6.35	2.38	2.8	0.8													0											
	CPGT09T302-GP	9.7	9.525	3.97	4.4	0.2													•											
	CPGT09T304-GP	9.7	9.525	3.97	4.4	0.4													•											
	CPGT09T308-GP	9.7	9.525	3.97	4.4	0.8													0											
	CPGT120404-GP	12.9	12.7	4.76	5.56	0.4													0											
	CPGT120408-GP	12.9	12.7	4.76	5.56	0.8													•											

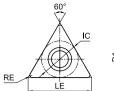


			меры им)								Тве	рды	ie c	пла	вы	с п	окр	ЮΤΙ	ием							рдые павы	лон	етал- кера- ика
Код заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP16130	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GK1115	GK1120	GK1125	GST7115	0211120	GS17130	GNT7120	GN9110	GN9120 GN9130	GP31TM	GP91TM GP92TM
DCMT070202-MN	1 7.8	6.35	2.38	2.8	0.2	•	•	•																			•	•
DCMT070204-MM	7.8	6.35	2.38	2.8	0.4	•	•	•					•			•											•	•
DCMT070208-MM	1 7.8	6.35	2.38	2.8	0.8		•									•												
DCMT11T302-MN	11.6	9.525	3.97	4.4	0.2	•	•	•								•											•	•
DCMT11T304-MN	11.6	9.525	3.97	4.4	0.4	•	•	•					•			•		•		•	•						•	•
DCMT11T308-MM	11.6	9.525	3.97	4.4	0.8	•	•	•					•)		•	•			•	•						•	•
DCMT070208-FP	7.8	6.35	2.38	2.8	0.8								0)														
DCMT11T304-FP	11.6	9.525	3.97	4.4	0.4	0	0						•					•									•	
DCMT11T308-FP	11.6	9.525	3.97	4.4	0.8	0	•	0					0)				0			0						0	
DCMT070204-SP	7.8	6.35	2.38	2.8	0.4																							•
DCMT11T302-SP	11.6	9.525	3.97	4.4	0.2																							•
DCMT11T304-SP	11.6	9.525	3.97	4.4	0.4																							•
DCMT11T308-SP	11.6	9.525	3.97	4.4	0.8																							•
DCMT070202-GF	7.8	6.35	2.38	2.8	0.2	•	()	С)	•			•	0			•									0	0
DCMT070204-GF	7.8	6.35	2.38	2.8	0.4	•	(•	•)	•		•	•	•	•	•	•		0							•	0
DCMT070208-GF	7.8	6.35	2.38	2.8	0.8	•	(•	•)	•			•	•	•				0							•	
DCMT11T302-GF	11.6	9.525	3.97	4.4	0.2	•	(0	•)	•			0	•			•									•	•
DCMT11T304-GF	11.6	9.525	3.97	4.4	0.4	•	•	•	•	•	•		•	•	•	•		•		•							•	•
DCMT11T308-GF	11.6	9.525	3.97	4.4	0.8	•	•	•	•	•	•		•	•	•	0		•		0							•	
DCMT11T312-GF	11.6	9.525	3.97	4.4	1.2											•												
DCMT150404-GF	15.5	12.7	4.76	5.56	0.4		(0			0			•	0													
DCMT150408-GF	15.5	12.7	4.76	5.56	0.8	0	()			•			•	0			0										
DCMT150412-GF	15.5	12.7	4.76	5.56	1.2									•	0													
DCGT070202-GP	7.8	6.35	2.38	2.8	0.2												•											
DCGT070204-GP	7.8	6.35	2.38	2.8	0.4												•											
DCGT070208-GP	7.8	6.35	2.38	2.8	0.8)										
DCGT11T302-GP	11.6	9.525	3.97	4.4	0.2												•											
DCGT11T304-GP	11.6	9.525	3.97	4.4	0.4																							
DCGT11T308-GP	11.6	9.525	3.97	4.4	0.8																							



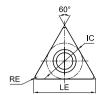
					меры им)								Тв	ер	ды	е сп	лав	ы с	поі	кры	ІТИ	ем						верд плав		лок	тал- кера- ика
	Код	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1130	GP1135	GM1115	GM1125	GM3215	GM3220	GM3225	GK1115	GK1120	GCT7115	GST7120	GST7130	GS3115	GN9110	GN9120	GN9130	GP311M	GP91TM GP92TM
		DCMT070202-TP	7.8	6.35	2.38	2.8	0.2																						(•
		DCMT070204-TP	7.8	6.35	2.38	2.8	0.4																						•		•
	1	DCMT070208-TP	7.8	6.35	2.38	2.8	0.8																						(•
4		DCMT11T302-TP	11.6	9.525	3.97	4.4	0.2																						(•
		DCMT11T304-TP	11.6	9.525	3.97	4.4	0.4																						_ (•
		DCMT11T308-TP	11.6	9.525	3.97	4.4	0.8																						•		Ð
		DCMT11T304-KM	11.6	9.525	3.97	4.4	0.4														•	•									
4		DCMT11T308-KM	11.6	9.525	3.97	4.4	0.8														•										
		DCGX070202-AL	7.8	6.35	2.38	2.8	0.2																			_		0			
		DCGX070204-AL	7.8	6.35	2.38	2.8	0.4																			•	•	•			
		DCGX070208-AL	7.8	6.35	2.38	2.8	0.8																			_		0			
		DCGX11T302-AL	11.6	9.525	3.97	4.4	0.2																			•		•			
		DCGX11T304-AL	11.6	9.525	3.97	4.4	0.4																			_	•		•		
		DCGX11T308-AL	11.6	9.525	3.97	4.4	0.8																			•		•			

SC


Квадрат 90° с отверстием

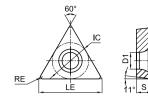
				меры								Тв	ерд	цые	сп.	лав	вы с	ПОІ	κрь	ІТИ	ем							рдь павы	e ,	Метал- покера- мика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1120	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GM3220	GM3225	GK1115	GK1120	GK1125	GS17115	GS17120	GS3115	GNT7120	GN9110	GN9120	GN9130	GP91TM GP92TM
8	SCMT09T304-MM	9.525	9.525	3.97	4.4	0.4	0	•	•									•	•	•	•								•	
	SCMT09T308-MM	9.525	9.525	3.97	4.4	8.0	0	•	•									•	•	•	•									
6	SCMT09T304-GP	9.525	9.525	3.97	4.4	0.4	•	(0	•		•			•	• (•	•	0	•	0 (•								0
	SCMT09T308-GP	9.525	9.525	3.97	4.4	0.8	•	•	0	•		•				•		•		•	0 (•								
	SCMT120404-GP	12.7	12.7	4.76	5.56	0.4	•	(0			•				0)	•		•	(0								0
	SCMT120408-GP	12.7	12.7	4.76	5.56	0.8	•	•	•	•		•			•	•		•		•	•	0								0
	SCMT09T304-TP	9.525	9.525	3.97	4.4	0.4												•												•
	SCMT09T308-TP	9.525	9.525	3.97	4.4	0.8																								•
	SCMT120404-TP	12.7	12.7	4.76	5.56	0.4																								•
	SCMT120408-TP	12.7	12.7	4.76	5.56	0.8																								•
	SCMT09T308-KM	9.525	9.525	3.97	4.4	8.0														•	• (•								
	SCMT120408-KM	12.7	12.7	4.76	5.56	0.8														•	•	•								
	SCMT120412-KM	12.7	12.7	4.76	5.56	1.2														•	•									
	SCGX09T304-AL	9.525	9.525	3.97	4.4	0.4																				•	0	0		
			9.525																							•		_		
	SCGX120404-AL	12.7		4.76	5.5																					•	0			
	SCGX120408-AL	12.7	12.7	4.76	5.5	0.8																				•	0	0		

Треугольник 60° с отверстием



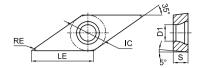
				меры мм)								7	Твє	ерді	ые	СПЛ	паі	вы	с п	окр)Ы	гие	М								рдые	Л	етал кера иика	a-
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130	GP1105	GP1115	GP1120	GP1225	GP1130	GP1135	GM1115	GM1125	GM1230	GM3215	GM3220	G1/22/20	GK11130	071170	GK1125	651/115	GS1/120	GS1/130	GS3113	GN1/120	GN9110	GN9120	GP31TM	GP91TM	GP92TM
	TCMT110202-MM	11	6.35	2.38	2.8	0.2	•	•	0										-													•	•	
-	TCMT110204-MM	11	6.35	2.38	2.8	0.4	•	•	•																							•	•	
	TCMT110208-MM	11	6.35	2.38	2.8	0.8																												
	TCMT16T304-MM	16.5	9.525	3.97	4.4	0.4	•	•	•																									
	TCMT16T308-MM	16.5	9.525	3.97	4.4	0.8	•	•	•						_ (•																		
	TCMT090204-FP	9.6	5.56	2.38	2.5	0.4															()										0		
	TCMT110204-FP	11	6.35	2.38	2.8	0.4)												
	TCMT110304-FP	11	6.35	2.38	3.18	0.4															•													
	TCMT16T304-FP	16.5	9.525	3.97	4.4	0.4	0																											
	TCMT110204-SPL	11	6.35	2.38	2.8	0.4																												D
	TCMT090204-GP	9.6	5.56	2.38	2.5	0.4	•		•		•		•					•			•		()								•	•	
	TCMT110202-GP	11	6.35	2.38	2.8	0.2	•		0				0				 O				-												•	
	TCMT110204-GP	11	6.35	2.38	2.8	0.4	•		•		•		•		(•		•														0	•	
	TCMT110208-GP	11	6.35	2.38	2.8	0.8	•		•		•		•		-	•	•	•) (-	•								0	0	
	TCMT16T304-GP	16.5	9.525	3.97	4.4	0.4	•		•		•		•					•	•				(•								0	•	
	TCMT16T308-GP	16.5	9.525	3.97	4.4	0.8	•		•		•		•		- (•	•	•	-	•			-	•								0	0	
	TCMT16T312-GP	16.5	9.525	3.97	4.4	1.2	•		•				•					•			((•										
	TCMT220408-GP	22	12.7	4.76	5.56	0.8	•		•		•		•				•	0			-	•	()										
	TCMT220412-GP	22	12.7	4.76	5.56	1.2				•																								
	TCGT090204-GP	9.6	5.56	2.38	2.5	0.4																												_
	TCGT110202-GP	11	6.35	2.38	2.8	0.2																												
	TCGT110204-GP	11	6.35	2.38	2.8	0.4														•														
	TCGT110208-GP	11	6.35	2.38	2.8	0.8																												
	TCGT16T304-GP	16.5	9.525	3.97	4.4	0.4														•	•													
	TCGT16T308-GP	16.5	9.525	3.97	4.4	0.8														()													
	TCMT090202-TP	9.6	5.56	2.38	2.5	0.2																										•	•	_
	TCMT090204-TP	9.6	5.56	2.38	2.5	0.4																										•	•	
	TCMT090208-TP	9.6	5.56	2.38	2.5	0.8																										•	•	
	TCMT110204-TP	11	6.35	2.38	2.8	0.4																										•	•	
	TCMT110208-TP	11	6.35	2.38	2.8	0.8																										•	•	
	TCMT16T304-TP	16.5	9.525	3.97	4.4	0.4																										•	•	
	TCMT16T308-TP	16.5	9.525	3.97	4.4	0.8																										•	•	

Треугольник 60° с отверстием

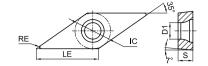


				меры мм)							٦	Гвер	одь	ie ci	τла	вы	с п	окр	ыті	ием					Твер	дые авы	ло	ета <i>л</i> кер ика	a-
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GPT6130 GP1105	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GK1115	GK1120	GK1125	GS1/115	 GS3115	GNT7120	GN9110	GN9130	GP31TM	GP91TM	GP92TM
	TCMT110204-KM	11	6.35	2.38	2.8	0.4													•										
	TCMT16T304-KM	16.5	9.525	3.97	4.4	0.4													•										
	TCMT16T308-KM	16.5	9.525	3.97	4.4	8.0													•										
	TCGX090204-AL	9.6	5.56	2.38	2.5	0.4																		•	0)			
	TCGX110202-AL	11	6.35	2.38	2.8	0.2																		•)			
	TCGX110204-AL	11	6.35	2.38	2.8	0.4																		•	0				_
	TCGX110208-AL	11	6.35	2.38	2.8	0.8																		•	0)			
	TCGX16T302-AL	16.5	9.525	3.97	4.4	0.2																		•)			
	TCGX16T304-AL	16.5	9.525	3.97	4.4	0.4																		•	0	0			
	TCGX16T308-AL	16.5	9.525	3.97	4.4	0.8																		•	0	0			

Треугольник 60° с отверстием

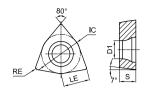


				меры мм)							-	Тве	рдь	ıe c	пла	авы	СП	ΙΟΚ	ры.	гиє	M:							рды 1авь	е Г	Метал- покера- мика
Ко	д заказа	LE	IC	S	D1	RE	GPT6110	GPT6120	GP10130	GP1115	GP1120	GP1225	GP1130	GM1115	GM1125	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GST7115	GST7120	GST7130	GS3115	GNT7120	GN9110	GN9120	GP31TM	GP91TM GP92TM
	TPMT110202-MM	11	6.35	2.38	2.8	0.2	•	00)										•)
	TPMT110204-MM	11	6.35	2.38	2.8	0.4	0	• 0)									•	•										C)
	TPMT110304-MM	11	6.35	3.18	3.4	0.4	•	•																					•	•
	TPMT090204-SPL	9.6	5.56	2.38	2.5	0.4																								•
	TPMT110304-SPL	11	6.35	3.18	3.4	0.4																								•
	TPGT110204-GP	11	6.35	2.38	2.8	0.4												(0											
	TPGT110208-GP	11	6.35	2.38	2.8	0.8												(0											
	TPGT16T304-GP	16.5	9.525	3.97	4.4	0.4												(0											
	TPGT16T308-GP	16.5	9.525	3.97	4.4	0.8												(0											
	TPMT090202-TP	9.6	5.56	2.38	2.5	0.2																							•	•
	TPMT090204-TP	9.6	5.56	2.38	2.5	0.4																							•	•
	TPMT090208-TP	9.6	5.56	2.38	2.5	0.8																							•	•
	TPMT110302-TP	11	6.35	3.18	3.4	0.2																							•	•
	TPMT110304-TP	11	6.35	3.18	3.4	0.4																								•
	TPMT110308-TP	11	6.35	3.18	3.4	0.8																							•	•
	TPMT160302-TP	16.5	9.525	3.18	4.4	0.2																							•	•
	TPMT160304-TP	16.5	9.525	3.18	4.4	0.4																							•	•
	TPMT160308-TP	16.5	9.525	3.18	4.4	0.8																							•	•



Ромб 35° с отверстием

				меры мм)							1	ве	рдь	ie	спл	авь	ı c r	ток	ры	ти	ем							ерды	е г	Иетал- окера- мика
	Код заказа	LE	IC	S	D1	RE	GPT6110	GP16120	GP1105	GP1115	GP1120	GP1225	GP1130	GP1133	GM1115	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	021/120	GS17130 GS3115	GNT7120	GN9110	GN9120	GD31TM	GP91TM GP92TM
	VBMT110304-	MM 11.2	6.35	3.18	2.8	0.4	• (•	•	•									•	•
	VBMT110308-	MM 11.2	6.35	3.18	2.8	0.8												•	•											
	VBMT160402-	MM 16.6	9.525	4.76	4.4	0.2												•	•				•							0
	VBMT160404-	MM 16.6	9.525	4.76	4.4	0.4	• (•	•				•	•	•				•	•
	VBMT160408-	MM 16.6	9.525	4.76	4.4	0.8	• (•	•			•	•		-	•	•						•	•
	VBMT160404-	FP 16.6	9.525	4.76	4.4	0.4								(0					•			•)
	NBMT160408-	FP 16.6	9.525	4.76	4.4	0.8	• ()						(0					•			•)
	VBMT110304-	SPL 11.2	6.35	3.18	2.8	0.4																								•
1	VBMT160404-	SPL 16.6	9.525	4.76	4.4	0.4																								•
	VBMT160404-	GP 16.6	9.525	4.76	4.4	0.4	•)	•	0	•				•	0	•	•	•	(0							•	0
C	VBMT160408-	GP 16.6	9.525	4.76	4.4	8.0	• ()	•	•	•		•	•	•		•	•	•	(0							•	•
	VBMT160412-	GP 16.6	9.525	4.76	4.4	1.2	•)	•		0								•										
	VBMT110304-	TP 11.2	6.35	3.18	2.8	0.4																								•
	VBMT110308-	TP 11.2	6.35	3.18	2.8	8.0																							•	•
4	VBMT160402-	TP 16.6	9.525	4.76	4.4	0.2																							•	•
	VBMT160404-	TP 16.6	9.525	4.76	4.4	0.4																							•	•
	VBMT160408-	TP 16.6	9.525	4.76	4.4	0.8																							•	•
	VBMT160408-	KM 16.6	9.525	4.76	4.4	0.8														•	•									



				меры им)							Т	вер	ды	ie d	спл	авь	ol C	пон	крь	ыти	ем							ерд плаі		лон	тал- кера- ика
Код	ц заказа	LE	IC	S	D1	RE	GPT6110	GP16120	GP1105	GP1115	GP1120	GP1225	GP1135	GM1115	GM11125	GM1230	GM3215	GM3220	GM3225	GK1115	GK1120	GK1125	GST7115	651/120	GS1/130 GS3115	GNT7120	GN9110	GN9120	GN9130	GP31TM	GP91TM GP92TM
	VCMT160404-MM	16.6	9.525	4.76	4.4	0.4	• (•								
1977	VCMT160408-MM	16.6	9.525	4.76	4.4	0.8	• (0								
	VCMT160408-FP	16.6	9.525	4.76	4.4	0.8)					0											
3																															
	VCMT110304-SPL	11.2	6.35	3.18	2.8	0.4																									•
0																															
														_												_					
	VCMT110304-GP	11.2	6.35	2 10	2 0	0.4														•										0 (
	VCMT110304-GP	11.2				0.4														0										0	-
	VCMT160404-GP		9.525							•	_																			0 (
	VCMT160408-GP		9.525							•								•	•	•											0
	VCGT110304-GP	11.2	6.35																•	_											
	VCGT160404-GP	16.6	9.525	4.76	4.4	0.4													•												
	VCGT160408-GP	16.6	9.525	4.76	4.4	0.8													0												
	VCMT160404-KM	16.6	9.525	4.76	4.4	0.4														•											
1	VCMT160408-KM	16.6	9.525	4.76	4.4	0.8														•											
	VCGX110302-AL	11.2	6.35	3.18	2.8	0.2																				•)	•			
	VCGX110304-AL	11.2	6.35	3.18	2.8	0.4																				•	0	•	0		
	VCGX110308-AL	11.2	6.35	3.18	2.8	0.8																				•	0				
	VCGX160402-AL	16.6	9.525	4.76	4.4	0.2																				•	0				
	VCGX160404-AL	16.6	9.525	4.76	4.4	0.4																					0	•	•		
	VCGX160408-AL		9.525																									•	0		
	VCGX160412-AL		9.525																							C		•			
	VCGX220512-AL		12.7																							C					
	VCGX220516-AL		12.7																												
	VCGX220530-AL	22.1	12.7	5.56	5.6	3.0																				•		•			

Треугольник 80° с отверстием

				меры	I							Тве	рдь	ie ci	пла	вы	с п	окрі	υТИ	ем						верд		Мет локе ми	ера-
К	од заказа	LE	IC	S	D1	RE	GPT6110	PT612	GPT6130	P111	P112	P12	GP1130	M111	GM1125	M123	GM3215	M32	GK1115	GK1120	GN1125 GST7115	GST7120	GST7130	GS3115	N911	N91	N913	GP31TM	GP92TM
	WCMT06T304-GP	6.5	9.525	3.97	4.4	0.4	•	(0	0		0			•	0			0									0 0)
	WCMT06T308-GP	6.5	9.525	3.97	4.4	0.8	•	(0	0		0			•				0										

Рекомендуемые параметры резания (для негативных пластин)

			06.5		Canada			Мин-оптимум-ма	КС
ISO	Материал заготовки	Твердость	Область примене- ния	Режим резания	Стружко- ломатель- ный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)
						GPT6110	240-300-400	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерывный		GP1105	220-280-380	0.40-0.80-2.00	0.08-0.15-0.35
						GP1115	200-260-360	0.40-0.80-2.00	0.08-0.15-0.35
				Универсаль-		GPT6120	200-280-380	0.40-0.80-2.00	0.08-0.15-0.35
				ный	QF	GP1120	200-260-360	0.40-0.80-2.00	0.08-0.15-0.35
						GP1225	180-240-320	0.40-0.80-2.00	0.08-0.15-0.35
			Чистовая	Прерывистый		GPT6130	180-240-320	0.40-0.80-2.00	0.08-0.15-0.35
			обработка	Прерывистыи		GP1130	180-240-320	0.40-0.80-2.00	0.08-0.15-0.35
						GP1135	170-220-300	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерывный	TF	GP31TM	220-300-380	0.30-0.70-1.80	0.07-0.14-0.35
				пепрерывный	IF	GP91TM	200-280-350	0.30-0.70-1.80	0.07-0.14-0.35
				Непрерывный	GF	GP1115	200-260-360	0.80-1.20-2.50	0.10-0.20-0.35
				Прерывистый	GF	GP1225	180-240-320	0.80-1.20-2.50	0.10-0.20-0.35
				Непрерывный	SPL	GP92TM	180-240-300	0.40-1.00-2.30	0.12-0.20-0.30
						GPT6110	220-280-380	0.80-2.00-4.00	0.15-0.20-0.40
						GP1105	200-260-360	0.80-2.00-4.00	0.15-0.20-0.40
				Непрерывный		GP1115	180-230-320	0.80-2.00-4.00	0.15-0.20-0.40
						GP31TM	210-280-330	0.50-1.20-2.50	0.10-0.18-0.30
						GP91TM	200-260-330	0.50-1.50-3.00	0.15-0.22-0.35
				Универсаль-	QM	GPT6120	180-250-340	0.80-2.00-4.00	0.15-0.20-0.40
				ный		GP1120	180-230-320	0.80-2.00-4.00	0.15-0.20-0.40
						GP1225	160-210-300	0.80-2.00-4.00	0.15-0.20-0.40
			Получи- стовая	Проривистий		GPT6130	160-230-300	0.80-2.00-4.00	0.15-0.20-0.40
D	Низкоуглеро-	≤HB180	обработка	Прерывистый		GP1130	160-210-300	0.80-2.00-4.00	0.15-0.20-0.40
	дистая сталь	<11D100				GP1135	150-190-280	0.80-2.00-4.00	0.15-0.20-0.40
				Непрерывный	GM	GP1115	180-230-320	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	GIVI	GP1225	160-210-300	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	SV	GP1225	160-200-300	1.00-2.50-4.50	0.18-0.25-0.45
				Непрерывный	TP	GP31TM	220-300-380	0.30-1.00-3.00	0.05-0.12-0.28
				Пепрерывный	I F	GP91TM	200-280-350	0.30-1.20-3.00	0.05-0.15-0.28
				Нопрорывшый	TS	GP31TM	200-280-350	0.50-1.00-3.00	0.10-0.15-0.35
				Непрерывный	13	GP91TM	200-260-330	0.50-1.20-3.00	0.10-0.20-0.35
						GPT6110	150-220-280	1.50-3.50-6.00	0.20-0.30-0.60
				Непрерывный		GP1105	130-190-270	1.50-3.50-6.00	0.20-0.30-0.60
						GP1115	120-180-250	1.50-3.50-6.00	0.20-0.30-0.60
			Черновая обработка	Универсаль- ный	QR	GPT6120	140-210-270	1.50-3.50-6.00	0.20-0.30-0.60
			оораоотка			GP1225	120-170-250	1.50-3.50-6.00	0.20-0.30-0.60
				Прерывистый		GPT6130	120-190-250	1.50-3.50-6.00	0.20-0.30-0.60
				Прерывистыи		GP1130	120-170-250	1.50-3.50-6.00	0.20-0.30-0.60
						GP1135	110-150-230	1.50-3.50-6.00	0.20-0.30-0.60
						GPT6110	100-170-230	3.00-6.00-12.0	0.35-0.60-1.10
				Непрерывный		GP1105	100-150-240	3.00-6.00-12.0	0.35-0.60-1.10
			Тяжелая			GP1115	90-150-210	3.00-6.00-12.0	0.35-0.60-1.10
			черновая обработка	Универсаль- ный	QH	GPT6120	100-160-220	3.00-6.00-12.0	0.35-0.60-1.10
						GP1225	90-140-210	3.00-6.00-12.0	0.35-0.60-1.10
				Прерывистый		GPT6130	90-150-210	3.00-6.00-12.0	0.35-0.60-1.10
						GP1135	80-130-190	3.00-6.00-12.0	0.35-0.60-1.10

Рекомендуемые параметры резания (для негативных пластин)

			Область		Струж-		1	Мин-оптимум-ма	КС
ISO	Материал заготовки	Твердость	примене-	Режим резания	колома- тельный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)
						GPT6110	220-270-360	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерывный		GP1105	200-250-340	0.40-0.80-2.00	0.08-0.15-0.35
						GP1115	180-230-320	0.40-0.80-2.00	0.08-0.15-0.35
				Универсаль- ный		GPT6120	180-250-340	0.40-0.80-2.00	0.08-0.15-0.35
					QF	GP1120	180-230-320	0.40-0.80-2.00	0.08-0.15-0.35
			Чистовая			GP1225	160-200-300	0.40-0.80-2.00	0.08-0.15-0.35
			обработка	Прерывистый		GPT6130	160-220-300	0.40-0.80-2.00	0.08-0.15-0.35
						GP1130	180-240-320	0.40-0.80-2.00	0.08-0.15-0.35
						GP1135	150-200-280	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерывный	GF	GP1115	180-230-320	0.80-1.20-2.50	0.10-0.20-0.35
				Прерывистый	Oi .	GP1225	160-200-300	0.80-1.20-2.50	0.10-0.20-0.35
				Непрерывный	SPL	GP92TM	160-210-290	0.40-1.00-2.30	0.12-0.20-0.30
						GPT6110	180-250-340	0.80-2.00-4.00	0.15-0.22-0.40
						GP1105	160-230-320	0.80-2.00-4.00	0.15-0.22-0.40
				Непрерывный		GP1115	140-210-300	0.80-2.00-4.00	0.15-0.20-0.40
						GP31TM	200-250-330	0.50-1.20-2.50	0.10-0.18-0.30
						GP91TM	180-230-310	0.50-1.50-3.00	0.15-0.20-0.35
				Универсаль-	QM	GPT6120	140-230-320	0.80-2.00-4.00	0.15-0.20-0.40
				ный		GP1120	140-210-300	0.80-2.00-4.00	0.15-0.20-0.40
						GP1225	120-190-280	0.80-2.00-4.00	0.15-0.20-0.40
			Получи- стовая	Прерывистый		GPT6130	120-210-280	0.80-2.00-4.00	0.15-0.20-0.40
	Углеродистая		обработка			GP1130	120-190-280	0.80-2.00-4.00	0.15-0.20-0.40
P	и легирован-	HB180-280				GP1135	100-170-260	0.80-2.00-4.00	0.15-0.20-0.40
	ная сталь			Непрерывный	GM	GP1115	140-210-300	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	-	GP1225	120-190-280	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	SV	GP1225	120-180-280	1.00-2.50-4.50	0.18-0.25-0.45
				Непрерывный	TP	GP31TM	200-270-350	0.30-1.00-2.50	0.05-0.12-0.28
						GP91TM	180-250-330	0.30-1.20-2.50	0.05-0.15-0.28
				Непрерывный	TS	GP31TM	180-250-330	0.50-1.00-3.00	0.10-0.15-0.35
						GP91TM	180-230-310	0.50-1.20-3.00	0.10-0.20-0.35
						GPT6110	140-210-270	1.50-3.50-6.00	0.20-0.30-0.60
				Непрерывный		GP1105	120-180-260	1.50-3.50-6.00	0.20-0.30-0.60
				Универсаль-		GP1115	110-170-240	1.50-3.50-6.00	0.20-0.30-0.60
			Черновая	ный	QR	GPT6120	130-200-260	1.50-3.50-6.00	0.20-0.30-0.60
			обработка			GP1225	110-160-240	1.50-3.50-6.00	0.20-0.30-0.60
				Прерывистый		GPT6130	110-180-240	1.50-3.50-6.00	0.20-0.30-0.60
				Прерывистыи		GP1130	110-160-240	1.50-3.50-6.00	0.20-0.30-0.60
						GP1135	100-140-220	1.50-3.50-6.00	0.20-0.30-0.60
						GPT6110	90-160-220	3.00-6.00-12.0	0.35-0.60-1.10
				Непрерывный		GP1105	90-140-230	3.00-6.00-12.0	0.35-0.60-1.10
			Тажолос			GP1115	80-140-200	3.00-6.00-12.0	0.35-0.60-1.10
			Тяжелая черновая обработка	Универсаль- ный	QH	GPT6120	90-150-210	3.00-6.00-12.0	0.35-0.60-1.10
			зориостка			GP1225	80-130-200	3.00-6.00-12.0	0.35-0.60-1.10
				Прерывистый		GPT6130	80-140-200	3.00-6.00-12.0	0.35-0.60-1.10
						GP1135	70-120-180	3.00-6.00-12.0	0.35-0.60-1.10

Рекомендуемые параметры резания (для негативных пластин)

			Область		Струж-			Мин-оптимум-ма	кс
ISO	Материал заготовки	Твердость	примене-	Режим резания	колома- тельный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)
						GPT6110	180-220-290	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерыв- ный		GP1105	160-200-270	0.40-0.80-2.00	0.08-0.15-0.35
						GP1115	150-180-250	0.40-0.80-2.00	0.08-0.15-0.35
				Универсаль-	QF	GPT6120	150-200-270	0.40-0.80-2.00	0.08-0.15-0.35
			Чистовая обработка	ный		GP1120	150-180-250	0.40-0.80-2.00	0.08-0.15-0.35
				Прерывистыи		GP1225	100-150-220	0.80-2.00-4.00	0.15-0.20-0.40
						GPT6130	130-170-230	0.40-0.80-2.00	0.08-0.15-0.35
						GP1130	130-150-230	0.40-0.80-2.00	0.08-0.15-0.35
						GP1135	110-130-210	0.40-0.80-2.00	0.08-0.15-0.35
				Непрерыв- ный	GF	GP1115	150-180-250	0.80-1.20-2.50	0.10-0.20-0.35
				Прерывистый	0.	GP1225	130-150-230	0.80-1.20-2.50	0.10-0.20-0.35
				Непрерыв- ный	SPL	GP92TM	150-190-280	0.40-1.00-2.30	0.12-0.20-0.30
			Получи- стовая обработка	Непрерыв- ный		GPT6110	140-200-270	0.80-2.00-4.00	0.15-0.20-0.40
					QM	GP1105	120-180-250	0.80-2.00-4.00	0.15-0.20-0.40
						GP1115	110-170-240	0.80-2.00-4.00	0.15-0.20-0.40
						GP31TM	180-230-320	0.50-1.20-2.50	0.10-0.18-0.30
		HB280-350				GP91TM	160-210-300	0.50-1.50-3.00	0.15-0.22-0.35
				Универсаль- ный		GPT6120	110-190-260	0.80-2.00-4.00	0.15-0.20-0.40
						GP1120	110-170-240	0.80-2.00-4.00	0.15-0.20-0.40
				Прерывистый		GP1225	100-150-220	0.80-2.00-4.00	0.15-0.20-0.40
						GPT6130	100-170-220	0.80-2.00-4.00	0.15-0.20-0.40
	Углеродистая и легирован- ная сталь					GP1130	100-150-220	0.80-2.00-4.00	0.15-0.20-0.40
P						GP1135	900-130-200	0.80-2.00-4.00	0.15-0.20-0.40
_				Непрерыв- ный	GM	GP1115	110-170-240	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	J	GP1225	100-150-220	1.00-2.00-4.00	0.18-0.22-0.40
				Прерывистый	SV	GP1225	100-140-220	1.00-2.50-4.50	0.18-0.25-0.45
				Непрерыв- ный	TP TS	GP31TM	180-250-320	0.30-1.00-2.50	0.05-0.12-0.28
						GP91TM	170-230-300	0.30-1.20-2.50	0.05-0.15-0.28
				Непрерыв-		GP31TM	170-230-300	0.50-1.00-3.00	0.10-0.15-0.35
				ный	13	GP91TM	150-210-280	0.50-1.20-3.00	0.10-0.20-0.35
						GPT6110	120-190-230	2.00-3.50-6.50	0.20-0.30-0.60
				Непрерыв- ный		GP1105	100-150-210	2.00-3.50-6.50	0.20-0.30-0.60
						GP1115	90-150-200	2.00-3.50-6.50	0.20-0.30-0.60
			Черновая	Универсаль- ный	QR	GPT6120	110-180-220	2.00-3.50-6.50	0.20-0.30-0.60
			обработка		Qit	GP1225	90-140-200	2.00-3.50-6.50	0.20-0.30-0.60
				v		GPT6130	90-160-200	2.00-3.50-6.50	0.20-0.30-0.60
				Прерывистый		GP1130	90-140-200	2.00-3.50-6.50	0.20-0.30-0.60
						GP1135	80-120-180	2.00-3.50-6.50	0.20-0.30-0.60
						GPT6110	80-130-190	3.00-6.00-12.0	0.35-0.60-1.10
				Непрерыв- ный		GP1105	80-110-190	3.00-6.00-12.0	0.35-0.60-1.10
			Tarres			GP1115	70-110-170	3.00-6.00-12.0	0.35-0.60-1.10
			Тяжелая черновая обработка	Универсаль- ный	QH	GPT6120	80-120-180	3.00-6.00-12.0	0.35-0.60-1.10
				НЫИ		GP1225	70-100-170	3.00-6.00-12.0	0.35-0.60-1.10
				Прерывистый		GPT6130	70-110-170	3.00-6.00-12.0	0.35-0.60-1.10
				P C P DI DI I C I DI II		GP1135	60-90-150	3.00-6.00-12.0	0.35-0.60-1.10

Рекомендуемые параметры резания (для негативных пластин)

	Матопиал		Область		Струж-		Мин-оптимум-макс			
ISO	Материал заготовки	Твердость	примене- ния	Режим резания	тельный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)	
				V	SF	GS3115	120-190-250	0.10-0.80-1.50	0.08-0.10-0.30	
			Чистовая обработка	Универсальный	SF	GM3220	100-150-200	0.10-0.80-1.50	0.08-0.12-0.25	
			оориоотки	Универсальный	YF	GM3220	100-150-200	0.10-1.0-2.0	0.08-0.15-0.3	
						GM1115	200-250-300	0.50-1.20-2.00	0.10-0.20-0.40	
				Непрерывный		GM3215	120-160-200	1.00-2.00-3.00	0.15-0.20-0.30	
				Универсальный	SM	GM3220	60-130-180	1.00-2.00-3.00	0.15-0.20-0.35	
Ф				Прерывистый	SIVI	GM1125	180-230-280	0.50-1.80-3.00	0.10-0.20-0.40	
	Мартенсит-					GM1230	180-230-280	0.50-1.80-3.00	0.10-0.20-0.40	
	ная Ферритная SUS410 SUS430etc.	≤HB230	Получи- стовая			GM3225	60-130-180	1.00-2.00-3.00	0.15-0.20-0.35	
		≪ΠD230	обработка	Попровення		GM1115	200-250-300	0.80-1.80-3.50	0.08-0.18-0.40	
				Непрерывный		GM3215	120-160-200	0.80-1.80-3.50	0.08-0.18-0.30	
				Универсальный	LM	GM3220	60-130-180	0.80-1.80-3.50	0.08-0.20-0.40	
				Прерывистый	LM	GM1125	180-230-280	0.80-1.80-3.50	0.08-0.18-0.40	
						GM1230	180-230-280	0.80-1.80-3.50	0.08-0.18-0.40	
						GM3225	60-130-180	0.80-1.80-3.50	0.08-0.20-0.40	
				Непрерывный		GM1115	200-250-300	1.50-3.00-5.00	0.15-0.30-0.50	
			Черновая обработка	Универсальный	LR	GM3220	60-130-180	1.50-3.00-5.00	0.15-0.30-0.50	
AA				Прерывистый		GM3225	60-130-180	1.50-3.00-5.00	0.15-0.30-0.50	
141			Чистовая обработка	Универсальный	SF	GS3115	120-190-250	0.10-0.80-1.50	0.08-0.10-0.30	
					-	GM3220	80-130-180	0.10-0.80-1.50	0.08-0.12-0.25	
				Универсальный	YF	GM3220	80-130-180	0.10-1.0-2.0	0.08-0.15-0.3	
				Цопровиний		GM1115	180-230-280	0.50-1.20-2.00	0.10-0.20-0.40	
				Непрерывный		GM3215	100-130-160	1.00-2.00-3.00	0.15-0.20-0.30	
				Универсальный	SM	GM3220	60-110-150	1.00-2.00-3.00	0.15-0.20-0.35	
					SIVI	GM1125	180-230-280	0.50-1.80-3.00	0.10-0.20-0.40	
	Аустенитная			Прерывистый		GM1230	180-230-280	0.50-1.80-3.00	0.10-0.20-0.40	
	SUS201	≤HB250	Получи- стовая			GM3225	60-110-150	1.00-2.00-3.00	0.15-0.20-0.35	
	SUS304 SUS316etc.	≪11D250	обработка	Непрерывный		GM1115	200-250-300	0.80-1.80-3.50	0.08-0.18-0.40	
	303310etc.			пепрерывный		GM3215	100-130-160	0.80-1.80-3.50	0.08-0.18-0.30	
				Универсальный	LM	GM3220	60-110-150	0.80-1.80-3.50	0.08-0.20-0.40	
					LIVI	GM1125	160-200-240	0.80-1.80-3.50	0.08-0.18-0.40	
				Прерывистый		GM1230	160-200-240	0.80-1.80-3.50	0.08-0.18-0.40	
						GM3225	60-110-150	0.80-1.80-3.50	0.08-0.20-0.40	
				Непрерывный		GM1115	180-230-280	1.50-3.00-5.00	0.15-0.30-0.50	
			Черновая обработка	Универсальный	LR	GM3220	60-110-150	1.50-3.00-5.00	0.15-0.30-0.50	
				Прерывистый		GM3225	60-110-150	1.50-3.00-5.00	0.15-0.30-0.50	

Рекомендуемые параметры резания (для негативных пластин)

	Management		Область	D	Струж-		N	Лин-оптимум-маг	КС
ISO	Материал заготовки	Твердость	примене- ния	Режим резания	колома- тельный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)
				Непрерывный	14/14/1	GK1115	230-350-500	1.00-2.00-6.00	0.20-0.40-0.80
				Прерывистый	WMV	GK1125	220-320-480	1.00-2.00-6.00	0.20-0.40-0.80
				Непрерывный		GK1115	230-350-500	0.50-1.50-3.00	0.10-0.20-0.40
			Получисто-	Универсаль- ный	MK	GK1120	230-320-500	0.50-1.50-3.00	0.10-0.20-0.40
			вая обра- ботка	Прерывистый		GK1125	220-320-480	0.50-1.50-3.00	0.10-0.20-0.40
				Непрерывный		GK1115	230-350-500	0.50-1.50-3.00	0.10-0.20-0.40
	Ферросталь FC200	≤HB220		Универсаль- ный	UK	GK1120	230-320-500	0.50-1.50-3.00	0.10-0.20-0.40
	FC250 FC300etc.			Прерывистый		GK1125	220-320-480	0.50-1.50-3.00	0.10-0.20-0.40
	rcsouetc.			Непрерывный		GK1115	220-320-480	0.50-2.00-4.00	0.10-0.25-0.50
			Черновая обработка	Универсаль- ный	HK	GK1120	220-300-480	0.50-2.00-4.00	0.10-0.25-0.50
				Прерывистый		GK1125	210-300-450	0.50-2.00-4.00	0.10-0.25-0.50
			Тяжелая черновая обработка	Непрерывный	Плоский	GK1115	210-300-450	1.00-2.50-6.00	0.20-0.30-0.60
				Универсаль- ный		GK1120	210-280-450	1.00-2.50-6.00	0.20-0.30-0.60
V				Прерывистый		GK1125	200-280-430	1.00-2.50-6.00	0.20-0.30-0.60
I	Чугун с шаровидным графитом FCD450 FCD500 FCD600etc.	≪HB300	Получистовая обработка Черновая обработка	Непрерывный	WMV	GK1115	180-260-380	1.00-2.00-6.00	0.20-0.40-0.80
				Прерывистый		GK1125	160-230-350	1.00-2.00-6.00	0.20-0.40-0.80
				Непрерывный	MK	GK1115	180-260-380	0.50-1.50-3.00	0.10-0.20-0.40
				Универсаль- ный		GK1120	180-260-380	0.50-1.50-3.00	0.10-0.20-0.40
				Прерывистый		GK1125	160-230-350	0.50-1.50-3.00	0.10-0.20-0.40
				Непрерывный		GK1115	180-260-380	0.50-1.50-3.00	0.10-0.20-0.40
				Универсаль- ный	НК	GK1120	180-260-380	0.50-1.50-3.00	0.10-0.20-0.40
				Прерывистый		GK1125	160-230-350	0.50-1.50-3.00	0.10-0.20-0.40
				Непрерывный		GK1115	180-240-360	0.50-2.00-4.00	0.10-0.25-0.50
				Универсаль- ный		GK1120	180-240-360	0.50-2.00-4.00	0.10-0.25-0.50
				Прерывистый		GK1125	160-230-350	0.50-2.00-4.00	0.10-0.25-0.50
			Тяжелая	Непрерывный		GK1115	180-220-350	1.00-2.50-6.00	0.20-0.30-0.60
			Тяжелая черновая обработка	Универсаль- ный	Плоский	GK1120	180-220-350	1.00-2.50-6.00	0.20-0.30-0.60
			оорисстки	Прерывистый		GK1125	160-230-350	1.00-2.50-6.00	0.20-0.30-0.60
				Непрерывный		GST7115	20-40-70	0.50-1.50-3.00	0.10-0.15-0.22
			Чистовая	Универсаль- ный	EL	GST7120	20-40-70	0.50-1.50-3.00	0.10-0.15-0.22
			- получисто-	Прерывистый		GST7125	20-30-40	0.50-1.50-3.00	0.10-0.15-0.22
			вая обра- ботка	Непрерывный		GST7115	20-40-70	0.50-1.50-3.00	0.10-0.20-0.30
				Универсаль- ный	SML	GST7120	20-40-70	0.50-1.50-3.00	0.10-0.20-0.30
C	Суперсплавы Титан	≪HRC45		Прерывистый		GST7125	20-30-40	0.50-1.50-3.00	0.10-0.20-0.30
	Сплавы	1		Непрерывный		GST7115	20-40-70	1.00-2.50-4.00	0.10-0.20-0.35
				Универсаль- ный	EM	GST7120	20-40-70	1.00-2.50-4.00	0.10-0.20-0.35
			Получисто- вая обра-	Прерывистый		GST7125	20-30-40	1.00-2.50-4.00	0.10-0.20-0.35
			ботка	Непрерывный		GST7115	20-40-70	1.00-2.50-4.00	0.10-0.25-0.40
				Универсаль- ный	SMM	GST7120	20-40-70	1.00-2.50-4.00	0.10-0.25-0.40
				Прерывистый		GST7125	20-30-40	1.00-2.50-4.00	0.10-0.25-0.40

Рекомендуемые параметры резания (позитивные пластины)

Твердость применения Режим резания Режим резания Режим резания Сплав Скорость резания резания Скорость резания резания резания подет (мм, мм) Скорость резания резания резания ар (мм) О.10-0.60-1.50 О.30-0.1
Низкоугле- родистая сталь НВ180 НВ180 Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Порерывистый Пореры поремы пореды
Низкоуглеродистая сталь Низкоуглеродистая обработка Получистовая обработка Получистовая обработка Непрерывный ный непрерывный ный непрерывный ный прерывистый непрерывный ный непрерывный непрерывный ный прерывистый непрерывный ный непрерывный ный непрерывный ный непрерывный ный прерывистый непрерывный ный непрерывный ный непрерывный ный прерывистый непрерывный ный прерывнатый непрерывный ный прерывный ный непрерывный населенаем населе
Низкоуглеродистая сталь Низкоуглеродистая сталь Низкоуглеродистая сталь Низкоуглеродистая сталь Нашен прерывнатый прерывистый прерывить прерывит
Ный Прерывистый
Низкоуглеродистая сталь Низкоуглеродистая сталь Непрерывный Прерывистый Прерывистый Непрерывный Прерывистый Непрерывный Прерывистый Непрерывный Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка По
Низкоуглеродистая сталь Непрерывный Прерывистый Получистовая обработка П
Низкоуглеродистая сталь Низкоуглеродистая сталь Низкоуглеродистая сталь Низкоуглеродистая сталь Непрерывный Прерывистый Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Порерывистый Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Порерывистый Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Непрерывный Получистовая обработка Получистовая обработка Непрерывный Получистовая обработка Получисто
РОДИСТАЯ СТАЛЬ НВ180 НВ180 НВ180 РР Универсальный Прерывистый Прерывистый Прерывистый Непрерывновая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Порерывистый Получистовая обработка Получистовая обработка Получистовая обработка Получистовая обработка Непрерывный Порерывистый Получистовая обработка
Сталь
Непрерывный ВРЦ Получистовая обработка Получистовая обработка Обр
Получистовая обработка Получ
ный прерыватобработка Получистовая обработка Непрерывный ный прерыватобработка Непрерывный ный прерыватый
обработка Прерывистый Получистовая обработка Непрерывный ТР Непрерывный Непрерывный ММ Ортентиции (Сругов и престоя прес
ТР
обработка ный ГР GP91TM 180-230-300 0.30-1.00-3.00 0.05-0.1 Непрерывный GP91TM 180-230-330 0.10-0.50-1.00 0.03-0.1 GP91TM 180-230-300 0.10-0.60-1.50 0.03-0.1 Универсаль- GPT6120 150-200-380 0.10-0.60-1.50 0.05-0.1
Непрерывный GP91TM 180-230-300 0.10-0.60-1.50 0.03-0.1 MM GPT6110 180-220-290 0.10-0.60-1.50 0.05-0.1 Универсаль- GPT6120 150-200-280 0.10-0.60-1.50 0.05-0.1
ный GF911M 100-230-300 0.10-0.00-1.30 0.05-0.1 MM GPT6110 180-220-290 0.10-0.60-1.50 0.05-0.1 Универсаль- GPT6120 150-200-280 0.10-0.60-1.50 0.05-0.1
Универсаль- GPT6110 180-220-290 0.10-0.60-1.50 0.05-0.1
НЫИ
Чистовая Прерывистый GPT6130 140-180-240 0.10-0.60-1.50 0.05-0.1
обработка GP31TM 200-250-330 0.10-0.50-1.00 0.06-0.1
Непрерыв- ный GP91TM 180-230-300 0.10-0.50-1.00 0.06-0.1
HB180-280 FP GPT6110 180-220-290 0.10-0.50-1.00 0.06-0.1
Универсальный GPT6120 150-200-280 0.10-0.50-1.00 0.06-0.1
Прерывистый GPT6130 140-180-240 0.10-0.50-1.00 0.06-0.1
Получистовая - черновая - Чернов
обработка Прерывистый GP1130 120-140-220 0.40-1.00-2.50 0.07-0.1
Углеро- Получистовая Непрерыв- ТР GP31TM 180-210-280 0.30-1.00-3.00 0.05-0.1
углеро- дистая и обработка ный ГГ GP91TM 160-190-270 0.30-1.00-3.00 0.05-0.1
легирован- ная сталь
ный GP91TM 140-200-280 0.10-0.60-1.50 0.03-0.1
MM GPT6110 160-200-260 0.10-0.60-1.50 0.05-0.1
Универсальный GPT6120 130-180-250 0.10-0.60-1.50 0.05-0.1
Чистовая Прерывистый GPT6130 120-160-210 0.10-0.60-1.50 0.05-0.1
обработка GP31TM 160-220-300 0.10-0.50-1.00 0.06-0.1 Непрерыв-
Ный GP911M 140-200-280 0.10-0.50-1.00 0.06-0.1
р GF10110 100-200-200 0.10-0.30-1.00 0.00-0.1
Универсальный GPT6120 130-180-250 0.10-0.50-1.00 0.06-0.1
Прерывистый GPT6130 120-160-210 0.10-0.50-1.00 0.06-0.1
- Vuidonco di
Получистовая - черновая - черновая
GF1120 120-100-210 0.40-1.00-2.30 0.01-0.1
- черновая

Рекомендуемые параметры резания (позитивные пластины)

					Струж-			Лин-оптимум-ма	кс
ISO	Материал заготовки	Твердость	Область приме- нения	Режим резания	колома- тельный уступ	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Скорость подачи f (мм/об)
	Мартен-			Непрерыв- ный		GM1115	200-250-300	0.40-0.70-1.50	0.05-0.10-0.20
				Универсаль- ный	ММ	GM3220	40-80-140	0.40-0.70-1.50	0.05-0.10-0.20
			Чистовая - получистовая обработка	Прерывистый	-	GM3225	40-80-140	0.40-0.70-1.50	0.05-0.10-0.20
				Непрерыв- ный		GM1115	200-250-300	0.10-0.50-1.00	0.06-0.11-0.25
	ситная Феррит-	≤HB300		Универсаль- ный	FP	GM3220	40-80-140	0.10-0.50-1.00	0.06-0.11-0.25
	ная SUS410	≪пвз00		Прерывистый		GM3225	40-80-140	0.10-0.50-1.00	0.06-0.11-0.25
	SUS430			Непрерыв-		GM1115	150-200-250	0.50-1.00-2.50	0.07-0.12-0.30
			Получистовая обработка	ный		GM3315	60-100-160	0.50-1.00-2.50	0.07-0.12-0.25
			до черно- вой-чистовой	Универсаль- ный	GP	GM3220	40-80-140	0.50-1.00-2.50	0.07-0.12-0.30
			обработки	Прерывистый		GM1230	120-150-180	0.50-1.00-2.50	0.07-0.12-0.30
M						GM3325	40-80-140	0.50-1.00-2.50	0.07-0.12-0.30
141	Аустенит- ная SUS201 SUS304 SUS316			Непрерыв- ный		GM1115	200-240-300	0.50-0.70-1.50	0.05-0.10-0.20
		≤HB250	Чистовая - получистовая обработка	Универсаль- ный	ММ	GM3220	40-70-140	0.50-0.70-1.50	0.05-0.10-0.20
				Прерывистый		GM3225	40-70-140	0.50-0.70-1.50	0.05-0.10-0.20
				Непрерыв- ный		GM1115	200-250-300	0.10-0.50-1.00	0.06-0.11-0.25
				Универсаль- ный	FP	GM3220	40-80-140	0.10-0.50-1.00	0.06-0.11-0.25
				Прерывистый		GM3225	40-80-140	0.10-0.50-1.00	0.06-0.11-0.25
	303310			Непрерыв-		GM1115	150-190-250	0.40-1.00-2.50	0.07-0.12-0.30
			Получистовая обработка до черновой-чистовой обработки	НЫЙ	-	GM3315	50-90-150	0.40-1.00-2.50	0.07-0.12-0.25
				Универсаль- ный	GP	GM3220	40-70-140	0.40-1.00-2.50	0.07-0.12-0.30
				Прерывистый		GM1230	120-140-180	0.40-1.00-2.50	0.07-0.12-0.30
						GM3325	40-70-140	0.40-1.00-2.50	0.07-0.12-0.30
		≤HB250	Чистовая обра- ботка Чистовая - получистовая обработка	Непрерыв- ный	FP	GK1115	180-260-360	0.10-0.50-1.00	0.06-0.11-0.25
				Непрерыв- ный	GP	GK1215	180-280-380	0.30-0.80-2.00	0.05-0.12-0.25
	Ферро- сталь			Универсаль- ный		GK1220	180-260-380	0.30-0.80-2.00	0.05-0.12-0.25
	FC200 FC250			Прерывистый		GK1225	160-250-350	0.30-0.80-2.00	0.05-0.12-0.25
	FC300etc.		Получистовая обработка	Непрерыв- ный		GK1115	180-260-360	1.00-2.00-4.00	0.13-0.20-0.40
			обработка до черно- вой-чистовой	Универсаль- ный	KM	GK1120	180-240-360	1.00-2.00-4.00	0.13-0.20-0.40
K			обработки	Прерывистый		GK1125	160-230-340	1.00-2.00-4.00	0.13-0.20-0.40
IX			Чистовая обра- ботка	Непрерыв- ный	FP	GK1115	180-260-360	0.10-0.50-1.00	0.06-0.11-0.25
	Чугун с		Чистовая -	Непрерыв- ный		GK1215	160-250-350	0.30-0.80-2.00	0.05-0.12-0.25
	шаро- видным		получистовая обработка	Универсаль- ный	GP	GK1220	160-220-350	0.30-0.80-2.00	0.05-0.12-0.25
	графитом FCD450	≤HB270		Прерывистый		GK1225	140-230-330	0.30-0.80-2.00	0.05-0.12-0.25
	FCD500 FCD600etc.		Получистовая обработка	Непрерыв- ный		GK1115	160-230-330	1.00-2.00-4.00	0.13-0.20-0.40
			обработка до черно- вой-чистовой	Универсаль- ный	KM	GK1120	160-200-330	1.00-2.00-4.00	0.13-0.20-0.40
			обработки	Прерывистый		GK1125	140-200-310	1.00-2.00-4.00	0.13-0.20-0.40
		Закалка НВ90-100	Чистовая -	Villaponessi		GN9110 GN9120	250-700-970 250-680-960	0.50-1.20-3.00 0.50-1.20-3.50	0.05-0.10-0.30 0.05-0.10-0.30
N	Алюминий	Закалка	получистовая обработка	Универсаль- ный	AL	GN9120 GN9130	250-650-950	0.50-1.20-3.30	0.05-0.10-0.30
		HB60-90	обработка			GNT7120	950-1300-2000	0.50-1.20-3.50	0.05-0.10-0.30

MEMO	

Режущие инструменты для обработки мелких деталей

Токарные инструменты для обработки малых деталей (негативные)

Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
Р	 Конструкция с наклонной канавкой позволяет стабильно контролировать направление отвода стружки. Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания. 	0 0.50 0.1 0.15 0.2 0.25 0.3 f[mv/ev]	15°	
G	 Конструкция с круглой канавкой повышает остроту режущей кромки, и обеспечивает прочность вершины инструмента. Конструкция с большой длиной кромки удовлетворяет потребности в большей глубине резания. 	ap(m) 2 2 1.5 0 0.05 0.1 0.15 0.2 0.25 0.3 f(mn/rev)	30°	
S	 Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию. Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания. 	ap(m) 3 2.5 1,5 0 0.05 0.1 0.15 0.2 0.25 0.3 f[m/rev]	25°	
AK	• Конструкция с острой кромкой удовлетворяет требованиям к высокому качеству обработки поверхности. • Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию.	ap [mn] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	15°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Шестиугольник 80°
			TNGG-P		
			P090		
			TNGG-G		
			P090		
			TNGG-S		
			P090		
			TNGG-AK		
			P090		

Токарные пластины для обработки малых деталей (позитивные) Задний угол 5°

Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
Р	• Конструкция с наклонной канавкой позволяет стабильно контролировать направление отвода стружки. • Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания.	3 2.5 2 1.5 1 0.5 0.2 0.25 0.3 f[mm/ew]	15°	
G	 Конструкция с круглой канавкой повышает остроту режущей кромки, и обеспечивает прочность вершины инструмента. Конструкция с большой длиной кромки удовлетворяет потребности в большей глубине резания. 	op(m) 3 2.5 1.0 0 0.05 0.1 0.15 0.2 0.25 0.3 f(m)/ev]	30°	
S	 Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию. Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания. 	ap[m] 3 2.5 1.5 0.0.05 0.1 0.15 0.2 0.25 0.3	14°	
AF	 Конструкция с узкими канавками удовлетворяет требования к ломанию стружки в области мелкой глубины резания. Конструкция с большим передним углом позволяет снижать сопротивление резанию, обеспечивать превосходное качество обработки поверхности. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	10°	
BF	• Специально разработанная конструкция стружколомательного уступа способствует завиванию стружки, облегчает отвод стружки. • Конструкция с малым передним углом обладает высокой прочностью вершины инструмента и хорошей универсальностю.	ap [mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	3°	
SK	 Конструкция с острой кромкой и углом наклона кромки повышает остроту кромки, эффективно снижает силу резания. Новая конструкция со стружколомом позволяет повышать способность к ломанию стружки при резании стали и нержавеющей стали с малой глубиной резания. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	12 °	
ВК	• Конструкция с широкими канавками обеспечивает плавный отвод стружки, осуществляет стабильность обработки. • Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию.	ap[m] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	12 °	
ММ	 Конструкция с двумя передними углами сочетает остроту с прочностью, обеспечивает широкий диапазон обработки. Конструкция с гиперболоидным стружколомательным уступом способствует стабильному завиванию стружки, осуществляет хорошее ломание и отвод стружки. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	15° 8°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Шестиугольник 80°
			TBGT-P	VBGT-P	WBGT-P
			P098	P101	P106
				VBGT-G	
				P101	
				VBG1-S P102	
				VBGT-AF	
				P102	
				VBGT-BF P102	
				1102	
				VBGT-SK	
				P102	
				VBGT-BK	
				P102	
				VBGT-MM	
				P102	
					GESAC 081

Токарные пластины для обработки малых деталей (позитивные) Задний угол 7°

Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
Р	 Конструкция с наклонной канавкой позволяет стабильно контролировать направление отвода стружки. Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания. 	3 2.5 2 1.5 1 0.5 0.2 0.25 0.3 f[mm/rx	15°	
G	 Конструкция с круглой канавкой повышает остроту режущей кромки, и обеспечивает прочность вершины инструмента. Конструкция с большой длиной кромки удовлетворяет потребности в большей глубине резания. 	ap(mm) 3 2.5 1.5 0.5 0.05 0.1 0.15 0.2 0.25 0.3 f[mm/rev]	30 °	
S	 Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию. Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания. 	ap[m] 3 2.5 1 0.8 0 0.05 0.1 0.15 0.2 0.25 0.3 f[m/rev]	14°	
AF	 Конструкция с узкими канавками удовлетворяет требования к ломанию стружки в области мелкой глубины резания. Конструкция с большим передним углом позволяет снижать сопротивление резанию, обеспечивать превосходное качество обработки поверхности. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	10°	
AK	 Конструкция с острой кромкой удовлетворяет требованиям к высокому качеству обработки поверхности. Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	10 °	

	Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Шестиугольник 80°
	CCGT-P	DCGT-P		TCGT-P	VCGT-P	
	P091	P095		P099	P103	
	CCGT-G	DCGT-G		TCGT-G	VCGT-G	
	P092	P096		P099	P103	
		DCGT-S			VCGT-S	
		P096			P103	
		DCGT-AF			VCGT-AF	
		P097			P104	
_		DCGT-AK				
		P097				

Токарные пластины для обработки малых деталей (позитивные) Задний угол 7°

Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
BF	• Специально разработанная конструкция стружколомательного уступа способствует завиванию стружки, облегчает отвод стружки. • Конструкция с малым передним углом обладает высокой прочностью вершины инструмента и хорошей универсальностю.	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	3°	
SK	 Конструкция с острой кромкой и углом наклона кромки повышает остроту кромки, эффективно снижает силу резания. Новая конструкция со стружколомом позволяет повышать способность к ломанию стружки при резании стали и нержавеющей стали с малой глубиной резания. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	12°	
ВК	 Конструкция с широкими канавками обеспечивает плавный отвод стружки, осуществляет стабильность обработки. Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	12°	
ММ	 Конструкция с двумя передними углами сочетает остроту с прочностью, обеспечивает широкий диапазон обработки. Конструкция с гиперболоидным стружколомательным уступом способствует стабильному завиванию стружки, осуществляет хорошее ломание и отвод стружки. 	ap[mm] 4 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	15°8°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Шестиугольник 80°
				i.	
CCGT-BF	DCGT-BF			VCGT-BF	
P094	P097			P104	
	DCGT-SK				
	P097				
CCGT-BK	DCGT-BK			VCGT-BK	
P094	P097			P104	
				k.	
	DCGT-MM			VCGT-MM	
	P097			P104	

Токарные пластины для обработки малых деталей (позитивные) Задний угол 11°

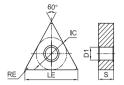
Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
Р	• Конструкция с наклонной канавкой позволяет стабильно контролировать направление отвода стружки. • Конструкция без ширины режущей кромки, острая режущая кромка, позволяют эффективно снижать силу резания.	ap(mn) 3 2.5 2 1.5 1 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 f[mn/rev]	15°	
G	 Конструкция с круглой канавкой повышает остроту режущей кромки, и обеспечивает прочность вершины инструмента. Конструкция с большой длиной кромки удовлетворяет потребности в большей глубине резания. 	0 0.05 0.1 0.15 0.2 0.25 0.3 f[sm/rev]	30°	
ВК	 Конструкция с широкими канавками обеспечивает плавный отвод стружки, осуществляет стабильность обработки. Конструкция с углом наклона кромки контролирует направление течения стружки, снижает сопротивление резанию 	ap[mn] 3 2 1 0 0.05 0.1 0.15 f[mm/rev]	12°	

Ромб 80°	Ромб 55°	Квадрат 90°	Равносторонний треугольник 60°	Ромб 35°	Шестиугольник 80°
			TPGT(H)-P	VPGT-P	
			P100	P105	
			TPGT-G	VPGT-G	
			P100	P105	
				VPGT-BK	
				P105	

Токарные инструменты для обработки малых деталей (другие) Обратное точение

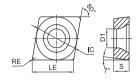
Геометрия канавки	Особенность	Сфера обработки	Геометрия канавки и сечение	
GSAB	• Конструкция специальной формы удовлетворяет требованиям обработки обратным точением. • Конструкция с особой геометрией канавок позволяет стабильно контролировать направление течения стружки.	ap[mm] 7 6 5 4 3 2 1 0 0.1 0.2 f[mm/rev]	15°	
GSTB	• Вертикально расположенная конструкция позволяет обеспечить надежное крепление и стабильное резание. • Конструкция с наклонной канавкой эффективно контролирует направление отвода стружки.	ao [mm] 7 0 5 4 3 2 1 0 0.1 0.2 f[mm/rev]	16°	

Схема обработки инструментов для обработки малых деталей


Методы обозначения типов трехмерных стружколомающих канавок и универсальных канавок

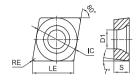
Токарные пластины (негативные)

Треугольник 60° с отверстием

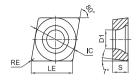

			F	Размерь (мм)	ıl		Твердые сплавы с покрытием			
Кс	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	TNGG160401L-P	16.5	9.525	4.76	3.81	0.1	•	•		•
	TNGG160401R-P	16.5	9.525	4.76	3.81	0.1	•	•		•
	TNGG160402L-P	16.5	9.525	4.76	3.81	0.2	•	•		•
	TNGG160402R-P	16.5	9.525	4.76	3.81	0.2	•	•		•
	TNGG160404L-P		9.525	4.76	3.81	0.4	•	•		•
	TNGG160404R-P	16.5	9.525	4.76	3.81	0.4	•	•		•
	TNGG160408L-P	16.5	9.525	4.76	3.81	0.8	0	•		0
	TNGG160408R-P	16.5	9.525	4.76	3.81	0.8	0	0		0
A	TNGG160404L-G	16.5	9.525	4.76	3.81	0.4		•		
	TNGG160404R-G	16.5	9.525	4.76	3.81	0.4		•		
	TNGG160408L-G	16.5	9.525	4.76	3.81	0.8		•		
	TNGG160408R-G	16.5	9.525	4.76	3.81	0.8		•		
<u> </u>	TNGG160404R-S	16.5	9.525	4.76	3.81	0.4	•			
	TNGG160401M-AK	16.5	9.525	4.76	3.81	<0.1	•			•
	TNGG160402M-AK	16.5	9.525	4.76	3.81	<0.2	•		•	•
	TNGG160404M-AK	16.5	9.525	4.76	3.81	<0.4	•		0	•

Для обработки мелки

Токарные пластины (позитивные)

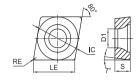


			F	Размерь (мм)	ı			Твердые сплав	вы с покрытием	
ŀ	бод заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	CCGT0301005ML-P	4.0	3.5	1.4	1.9	<0.05	0	0		0
	CCGT0301005MR-P	4.0	3.5	1.4	1.9	<0.05	0	0		0
	CCGT030101ML-P	4.0	3.5	1.4	1.9	<0.1	•	0		•
	CCGT030101MR-P	4.0	3.5	1.4	1.9	<0.1	0	0		0
	CCGT030102ML-P	4.0	3.5	1.4	1.9	<0.2	•	0		•
	CCGT030102MR-P	4.0	3.5	1.4	1.9	<0.2	•	0		0
	CCGT030104ML-P	4.0	3.5	1.4	1.9	<0.4	•	0		•
	CCGT030104MR-P	4.0	3.5	1.4	1.9	<0.4	0	0		0
	CCGT0401005ML-P	4.8	4.3	1.8	2.3	<0.05	0	0		0
	CCGT0401005MR-P	4.8	4.3	1.8	2.3	<0.05	0	0		0
	CCGT040101ML-P	4.8	4.3	1.8	2.3	<0.1	0	0		0
	CCGT040101MR-P	4.8	4.3	1.8	2.3	<0.1	0	0		0
	CCGT040102ML-P	4.8	4.3	1.8	2.3	<0.2	•	0		•
	CCGT040102MR-P	4.8	4.3	1.8	2.3	<0.2	•	0		0
	CCGT040104ML-P	4.8	4.3	1.8	2.3	<0.4	•	0		•
	CCGT040104MR-P	4.8	4.3	1.8	2.3	<0.4	•	0		0
	CCGT0602005ML-P	6.5	6.35	2.38	2.8	<0.05	0	0		0
	CCGT0602005MR-P	6.5	6.35	2.38	2.8	<0.05	0	•		0
	CCGT060201ML-P	6.5	6.35	2.38	2.8	<0.1	•	•		•
	CCGT060201MR-P	6.5	6.35	2.38	2.8	<0.1	0	•		0
	CCGT09T3005ML-P	9.7	9.525	3.97	4.4	<0.05	0	0		0
	CCGT09T3005MR-P	9.7	9.525	3.97	4.4	<0.05	0	•		0
	CCGT09T301ML-P	9.7	9.525	3.97	4.4	<0.1	0	0		0
	CCGT09T301MR-P	9.7	9.525	3.97	4.4	<0.1	0	0		0
	CCGT030101L-P	4.0	3.5	1.4	1.9	0.1		•		
	CCGT030102L-P	4.0	3.5	1.4	1.9	0.2		•		
	CCGT030104L-P	4.0	3.5	1.4	1.9	0.4		•		
	CCGT040101L-P	4.8	4.3	1.8	2.3	0.1		•		
	CCGT040102L-P	4.8	4.3	1.8	2.3	0.2		•		
	CCGT040104L-P	4.8	4.3	1.8	2.3	0.4		•		
	CCGT060201L-P	6.5	6.35	2.38	2.8	0.1		0		
	CCGT060201R-P	6.5	6.35	2.38	2.8	0.1		0		


			F	Размерь (мм)	I		Твердые сплавы с покрытием			
ı	Код заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	CCGT060202L-P	6.5	6.35	2.38	2.8	0.2		•		
	CCGT060202R-P	6.5	6.35	2.38	2.8	0.2		•		
	CCGT060204L-P	6.5	6.35	2.38	2.8	0.4		•		
	CCGT060204R-P	6.5	6.35	2.38	2.8	0.4		•		
	CCGT09T301L-P	9.7	9.525	3.97	4.4	0.1		0		
	CCGT09T301R-P	9.7	9.525	3.97	4.4	0.1		•		
	CCGT09T302L-P	9.7	9.525	3.97	4.4	0.2		0		
	CCGT09T302R-P	9.7	9.525	3.97	4.4	0.2		•		
	CCGT09T304L-P	9.7	9.525	3.97	4.4	0.4		•		
	CCGT09T304R-P	9.7	9.525	3.97	4.4	0.4		•		
	CCGT0602005ML-G	6.5	6.35	2.38	2.8	<0.05	•	0		0
	CCGT0602005MR-G	6.5	6.35	2.38	2.8	<0.05	0	0		0
	CCGT060201MEL-G	6.5	6.35	2.38	2.8	<0.1	0	0		0
	CCGT060201MER-G	6.5	6.35	2.38	2.8	<0.1	0	0		0
	CCGT060201ML-G	6.5	6.35	2.38	2.8	<0.1	•	0		0
	CCGT060201MR-G	6.5	6.35	2.38	2.8	<0.1	•	0		0
	CCGT060202ML-G	6.5	6.35	2.38	2.8	<0.2	•	0		0
	CCGT060202MR-G	6.5	6.35	2.38	2.8	<0.2	•	0		0
	CCGT09T3005ML-G	9.7	9.525	3.97	4.4	<0.05	•	0		0
	CCGT09T3005MR-G	9.7	9.525	3.97	4.4	<0.05	•	•		0
	CCGT09T301MEL-G	9.7	9.525	3.97	4.4	<0.1	0	0		0
	CCGT09T301MER-G	9.7	9.525	3.97	4.4	<0.1	0	0		0
	CCGT09T301ML-G	9.7	9.525	3.97	4.4	<0.1	•	0		0
	CCGT09T301MR-G	9.7	9.525	3.97	4.4	<0.1	•	•		•
	CCGT09T302ML-G	9.7	9.525	3.97	4.4	<0.2	•	0		0
	CCGT09T302MR-G	9.7	9.525	3.97	4.4	<0.2	•	0		•

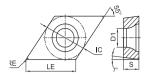
Для обработки мелк

Токарные пластины (позитивные)



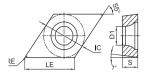
			ſ	Размерь (мм)	ı		Твердые сплавы с покрытием				
К	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
	CCGT060201EL-G	6.5	6.35	2.38	2.8	0.1		0			
	CCGT060201ER-G	6.5	6.35	2.38	2.8	0.1		0			
	CCGT060201L-G	6.5	6.35	2.38	2.8	0.1		0			
	CCGT060201R-G	6.5	6.35	2.38	2.8	0.1		0			
	CCGT060202EL-G	6.5	6.35	2.38	2.8	0.2		•			
	CCGT060202ER-G	6.5	6.35	2.38	2.8	0.2		•			
	CCGT060202L-G	6.5	6.35	2.38	2.8	0.2		•			
	CCGT060202R-G	6.5	6.35	2.38	2.8	0.2		•			
	CCGT060204EL-G	6.5	6.35	2.38	2.8	0.4		•			
	CCGT060204ER-G	6.5	6.35	2.38	2.8	0.4		•			
	CCGT060204L-G	6.5	6.35	2.38	2.8	0.4		0			
	CCGT060204R-G	6.5	6.35	2.38	2.8	0.4		0			
	CCGT09T301EL-G	9.7	9.525	3.97	4.4	0.1		•			
	CCGT09T301ER-G	9.7	9.525	3.97	4.4	0.1		•			
	CCGT09T301L-G	9.7	9.525	3.97	4.4	0.1		•			
	CCGT09T301R-G	9.7	9.525	3.97	4.4	0.1		•			
	CCGT09T302EL-G	9.7	9.525	3.97	4.4	0.2		•			
	CCGT09T302ER-G	9.7	9.525	3.97	4.4	0.2		•			
	CCGT09T302L-G	9.7	9.525	3.97	4.4	0.2		•			
	CCGT09T302R-G	9.7	9.525	3.97	4.4	0.2		•			
	CCGT09T304EL-G	9.7	9.525	3.97	4.4	0.4		•			
	CCGT09T304ER-G	9.7	9.525	3.97	4.4	0.4		•			
	CCGT09T304L-G	9.7	9.525	3.97	4.4	0.4		•			
	CCGT09T304R-G	9.7	9.525	3.97	4.4	0.4		0			

lacktriangle В наличии \bigcirc Доступно по запросу

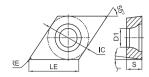

			I	Размерь (мм)	ı		Твердые сплавы с покрытием			
Ко	д заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	CCGT0602005M-BF	6.5	6.35	2.38	2.8	<0.05	•			
	CCGT060201M-BF	6.5	6.35	2.38	2.8	<0.1	•			•
	CCGT060202M-BF	6.5	6.35	2.38	2.8	<0.2	•			•
	CCGT09T301M-BF	9.7	9.525	3.97	4.4	<0.1	•		0	•
	CCGT09T302M-BF	9.7	9.525	3.97	4.4	<0.2	•		0	•
	CCGT09T304M-BF	9.7	9.525	3.97	4.4	<0.4	•			•
	CCGT060201M-BK	6.5	6.35	2.38	2.8	<0.1	•			•
	CCGT060202M-BK	6.5	6.35	2.38	2.8	<0.2	•			•
	CCGT09T301M-BK	9.7	9.525	3.97	4.4	<0.1	•		0	•
	CCGT09T302M-BK	9.7	9.525	3.97	4.4	<0.2	•		•	•
	CCGT09T304M-BK	9.7	9.525	3.97	4.4	<0.4	•			•

О Режущие инструмент для обработки мелки

Токарные пластины (позитивные)

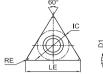


			Ī	Размерь (мм)	I			Твердые сплав	ы с покрытием	
К	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	DCGT0702005ML-P	7.8	6.35	2.38	2.8	<0.05	0	•		0
	DCGT0702005MR-P	7.8	6.35	2.38	2.8	<0.05	0	•		0
	DCGT070201ML-P	7.8	6.35	2.38	2.8	<0.1	0	0		0
	DCGT070201MR-P	7.8	6.35	2.38	2.8	<0.1	0			0
	DCGT070202MR-P	7.8	6.35	2.38	2.8	<0.2				0
	DCGT11T3005ML-P	11.6	9.525	3.97	4.4	<0.05	0	0		0
	DCGT11T3005MR-P	11.6	9.525	3.97	4.4	<0.05	0	•		0
	DCGT11T302MR-P	11.6	9.525	3.97	4.4	<0.2	•	0		•
	DCGT0702003L-P	7.8	6.35	2.38	2.8	0.03		0		
	DCGT0702003R-P	7.8	6.35	2.38	2.8	0.03		•		
	DCGT070201L-P	7.8	6.35	2.38	2.8	0.1		0		
	DCGT070201R-P	7.8	6.35	2.38	2.8	0.1		•		
	DCGT070202L-P	7.8	6.35	2.38	2.8	0.2		0		
	DCGT070202R-P	7.8	6.35	2.38	2.8	0.2		•		
	DCGT070204L-P	7.8	6.35	2.38	2.8	0.4		•		
	DCGT070204R-P	7.8	6.35	2.38	2.8	0.4		0		
	DCGT11T3003L-P	11.6	9.525	3.97	4.4	0.03		0		
	DCGT11T3003R-P	11.6	9.525	3.97	4.4	0.03		0		
	DCGT11T301L-P	11.6	9.525	3.97	4.4	0.1		0		
	DCGT11T301R-P	11.6	9.525	3.97	4.4	0.1		•		
	DCGT11T302L-P	11.6	9.525	3.97	4.4	0.2		•		
	DCGT11T302R-P	11.6	9.525	3.97	4.4	0.2		•		
	DCGT11T304L-P	11.6	9.525	3.97	4.4	0.4		•		
	DCGT11T304R-P	11.6	9.525	3.97	4.4	0.4	0	•		


		ſ	Размерь (мм)	I			Твердые сплав	Твердые сплавы с покрытием			
Код заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125		
DCGT0702005ML-G	7.8	6.35	2.38	2.8	<0.05	0	0		0		
DCGT0702005MR-G	7.8	6.35	2.38	2.8	<0.05	•	•		0		
DCGT070201MEL-G	7.8	6.35	2.38	2.8	<0.1	0	0		•		
DCGT070201MER-G	7.8	6.35	2.38	2.8	<0.1	0	0		•		
DCGT070201ML-G	7.8	6.35	2.38	2.8	<0.1	0	0		0		
DCGT070201MR-G	7.8	6.35	2.38	2.8	<0.1	•	0		0		
DCGT11T3005ML-G	11.6	9.525	3.97	4.4	<0.05	0	0		0		
DCGT11T3005MR-G	11.6	9.525	3.97	4.4	<0.05	0	•		•		
DCGT11T301MEL-G	11.6	9.525	3.97	4.4	<0.1	0	0		0		
DCGT11T301MER-G	11.6	9.525	3.97	4.4	<0.1	0	0		0		
DCGT11T301ML-G	11.6	9.525	3.97	4.4	<0.1	0	0		0		
DCGT11T301MR-G	11.6	9.525	3.97	4.4	<0.1	•	•		•		
DCGT11T302MER-G	11.6	9.525	3.97	4.4	<0.2				•		
DCGT11T302MR-G	11.6	9.525	3.97	4.4	<0.2	•	0		•		
DCGT070201L-G	7.8	6.35	2.38	2.8	0.1		0				
DCGT070201R-G	7.8	6.35	2.38	2.8	0.1		•				
DCGT070202L-G	7.8	6.35	2.38	2.8	0.2		0				
DCGT070202R-G	7.8	6.35	2.38	2.8	0.2		•				
DCGT11T301EL-G	11.6	9.525	3.97	4.4	0.1		•				
DCGT11T301ER-G	11.6	9.525	3.97	4.4	0.1		•				
DCGT11T301L-G	11.6	9.525	3.97	4.4	0.1		•				
DCGT11T301R-G	11.6	9.525	3.97	4.4	0.1		•				
DCGT11T302EL-G	11.6	9.525	3.97	4.4	0.2		•				
DCGT11T302ER-G	11.6	9.525	3.97	4.4	0.2		•				
DCGT11T302L-G	11.6	9.525	3.97	4.4	0.2		•				
DCGT11T302R-G	11.6	9.525	3.97	4.4	0.2		•				
DCGT11T304EL-G	11.6	9.525	3.97	4.4	0.4		0				
DCGT11T304ER-G	11.6	9.525	3.97	4.4	0.4		•				
DCGT11T302MR-S	11.6	9.525	3.97	4.4	<0.2	•			•		
DCGT11T304MR-S	11.6	9.525	3.97	4.4	<0.4	•			•		

О Режущие инструмент для обработки мелки

Токарные пластины (позитивные)



			F	Размерь (мм)	I		Твердые сплавы с покрытием				
Ко	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
	DCGT070201M-AF	7.8	6.35	2.38	2.8	<0.1	•			•	
	DCGT11T301M-AF	11.6	9.525	3.97	4.4	<0.1	•		0	•	
	DCGT11T301M-AK	11.6	9.525	3.97	4.4	<0.1	•		0	•	
A	DCGT11T302M-AK	11.6	9.525	3.97	4.4	<0.2	•		0	•	
100	DCGT11T304M-AK	11.6	9.525	3.97	4.4	<0.4				0	
	DCGT070201M-BF	7.8	6.35	2.38	2.8	<0.1	•		0	•	
	DCGT070202M-BF	7.8	6.35	2.38	2.8	<0.2	•			•	
	DCGT070204M-BF	7.8	6.35	2.38	2.8	<0.4	•			•	
	DCGT11T301M-BF	11.6	9.525	3.97	4.4	<0.1	•		0	•	
	DCGT11T302M-BF	11.6	9.525	3.97	4.4	<0.2	•		•	•	
	DCGT11T304M-BF	11.6	9.525	3.97	4.4	<0.4	•		•	•	
	DCGT070201M-BK	7.8	6.35	2.38	2.8	<0.1	•		0	•	
	DCGT070202M-BK	7.8	6.35	2.38	2.8	<0.2	•			•	
	DCGT11T301M-BK	11.6	9.525	3.97	4.4	<0.1	•		0	•	
	DCGT11T302M-BK	11.6	9.525	3.97	4.4	<0.2	•		•	•	
	DCGT11T304M-BK	11.6	9.525	3.97	4.4	<0.4	•		•	•	
	DCGT11T301M-SK	11.6	9.525	3.97	4.4	<0.1	0				
101	DCGT11T302M-SK	11.6	9.525	3.97	4.4	<0.2	0				
	DCGT11T304M-SK	11.6	9.525	3.97	4.4	<0.4	0				
	DCGT11T301M-MM	11.6	9.525	3.97	4.4	<0.1	•		•	•	
8037	DCGT11T302M-MM	11.6	9.525	3.97	4.4	<0.2	•		•	•	
	DCGT11T304M-MM	11.6	9.525	3.97	4.4	<0.4	•		•	•	

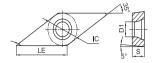
Треугольник 60° с отверстием

		ı	Размерь (мм)	I		Твердые сплавы с покрытием				
Код заказа		LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
_	TBGT060102L-P	6.9	3.97	1.59	2.3	0.2		•		
	TBGT060104L-P	6.9	3.97	1.59	2.3	0.4		•		
4.										

Треугольник 60° с отверстием

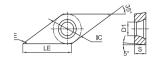
			I	Размерь (мм)	I			Твердые сплав	Твердые сплавы с покрытием				
К	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125			
	TCGT060102L-P	6.9	3.97	1.59	2.3	0.2		•					
	TCGT060104L-P	6.9	3.97	1.59	2.3	0.4		•					
	TCGT06T102L-P	6.9	3.97	1.98	2.3	0.2	0	0		0			
	TCGT06T102R-P	6.9	3.97	1.98	2.3	0.2	0	0		0			
	TCGT06T104L-P	6.9	3.97	1.98	2.3	0.4	0	0		0			
	TCGT06T104R-P	6.9	3.97	1.98	2.3	0.4	0	0		0			
*	TCGT080202L-P	8.2	4.76	2.38	2.3	0.2		•					
	TCGT080204L-P	8.2	4.76	2.38	2.3	0.4		•					
	TCGT110202L-P	11	6.35	2.38	2.8	0.2		•					
	TCGT110204L-P	11	6.35	2.38	2.8	0.4		•					
	TCGT0802005ML-G	8.2	4.76	2.38	2.3	<0.05	0	0		0			
	TCGT0802005MR-G	8.2	4.76	2.38	2.3	<0.05	0	0		0			
	TCGT080201ML-G	8.2	4.76	2.38	2.3	<0.1	0	0		0			
	TCGT080201MR-G	8.2	4.76	2.38	2.3	<0.1	0	0		0			
	TCGT1103005ML-G	11	6.35	3.18	2.8	<0.05	0	•		0			
	TCGT1103005MR-G	11	6.35	3.18	2.8	< 0.05	0	•		0			
	TCGT080202L-G	8.2	4.76	2.38	2.3	0.2		0					
	TCGT080204L-G	8.2	4.76	2.38	2.3	0.4		0					
	TCGT110301L-G	11	6.35	3.18	2.8	0.1		0					
	TCGT110302L-G	11	6.35	3.18	2.8	0.2		0					
	TCGT110304L-G	11	6.35	3.18	2.8	0.4		0					

Треугольник 60° с отверстием

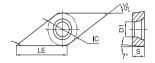

	Код заказа		F	Размерь (мм)	I		Твердые сплавы с покрытием				
Кс			IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
	TPGH1103005ML-P	11	6.35	3.18	3.4	<0.05	•	•		0	
	TPGH090202L-P	9.6	5.56	2.38	3.0	0.2		•			
	TPGH090204L-P	9.6	5.56	2.38	3.0	0.4		•			
A	TPGH110301L-P	11	6.35	3.18	3.4	0.1	•	•			
	TPGH110302L-P	11	6.35	3.18	3.4	0.2	•	•			
	TPGH110304L-P	11	6.35	3.18	3.4	0.4		•			
	TPGT080202L-P	8.2	4.76	2.38	2.3	0.2		•			
	TPGT080202R-P	8.2	4.76	2.38	2.3	0.2		0			
	TPGT080204L-P	8.2	4.76	2.38	2.3	0.4	0	•			
	TPGT080204R-P	8.2	4.76	2.38	2.3	0.4		0			
	TPGT080201L-G	8.2	4.76	2.38	2.3	0.1		0			
	TPGT080202L-G	8.2	4.76	2.38	2.3	0.2		0			
	TPGT080204L-G	8.2	4.76	2.38	2.3	0.4		0			

О Режущие инструмент для обработки мелки

Токарные пластины (позитивные)

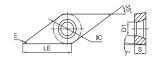


			I	Размерь (мм)	I			Твердые сплав	ы с покрытием	
Ко	рд заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	VBGT1103005ML-P	11.2	6.35	3.18	2.8	<0.05	0	0		0
	VBGT1103005MR-P	11.2	6.35	3.18	2.8	<0.05	•	•		•
	VBGT110301ML-P	11.2	6.35	3.18	2.8	<0.1	•	0		•
	VBGT110301MR-P	11.2	6.35	3.18	2.8	<0.1	•	0		•
	VBGT110302ML-P	11.2	6.35	3.18	2.8	<0.2	0	0		•
	VBGT110302MR-P	11.2	6.35	3.18	2.8	<0.2	•	0		•
	VBGT1103003L-P	11.2	6.35	3.18	2.8	0.03		0		
i.	VBGT1103003R-P	11.2	6.35	3.18	2.8	0.03		•		
	VBGT110301L-P	11.2	6.35	3.18	2.8	0.1		•		
	VBGT110301R-P	11.2	6.35	3.18	2.8	0.1		•		
	VBGT110302L-P	11.2	6.35	3.18	2.8	0.2		•		
	VBGT110302R-P	11.2	6.35	3.18	2.8	0.2		•		
	VBGT110304L-P	11.2	6.35	3.18	2.8	0.4		0		
	VBGT110304R-P	11.2	6.35	3.18	2.8	0.4		•		
	VBGT1103005ML-G	11.2	6.35	3.18	2.8	<0.05	0	•		0
	VBGT1103005MR-G	11.2	6.35	3.18	2.8	<0.05	•	•		•
	VBGT110301L-G	11.2	6.35	3.18	2.8	0.1		•		
	VBGT110301R-G	11.2	6.35	3.18	2.8	0.1		•		
	VBGT110302EL-G	11.2	6.35	3.18	2.8	0.2		0		
	VBGT110302ER-G	11.2	6.35	3.18	2.8	0.2		0		
	VBGT110302R-G	11.2	6.35	3.18	2.8	0.2		0		
	VBGT110304EL-G	11.2	6.35	3.18	2.8	0.4		•		
	VBGT110304ER-G	11.2	6.35	3.18	2.8	0.4		•		

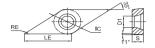

			F	Размерь (мм)	ıl			Твердые сплав	вы с покрытием	
Ко	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	VBGT1103005ML-S	11.2	6.35	3.18	2.8	<0.05	0	0		0
	VBGT1103005MR-S	11.2	6.35	3.18	2.8	<0.05	•	•		•
	VBGT110301ML-S	11.2	6.35	3.18	2.8	<0.1	•	0		0
	VBGT110301MR-S	11.2	6.35	3.18	2.8	<0.1	•	0		•
	VBGT110302ML-S	11.2	6.35	3.18	2.8	<0.2	•	0		•
	VBGT110302MR-S	11.2	6.35	3.18	2.8	<0.2	•	0		•
	VBGT110301L-S	11.2	6.35	3.18	2.8	0.1		•		
	VBGT110301R-S	11.2	6.35	3.18	2.8	0.1	0	•		0
	VBGT110302L-S	11.2	6.35	3.18	2.8	0.2		•		
	VBGT110302R-S	11.2	6.35	3.18	2.8	0.2		•		
	VBGT110304L-S	11.2	6.35	3.18	2.8	0.4		0		
	VBGT110304R-S	11.2	6.35	3.18	2.8	0.4		•		
	VBGT160402L-S	16.6	9.525	4.76	4.4	0.2		•		
	VBGT160402R-S	16.6	9.525	4.76	4.4	0.2		•		
	VBGT160404L-S	16.6	9.525	4.76	4.4	0.4		•		
	VBGT160404R-S	16.6	9.525	4.76	4.4	0.4		•		
	VBGT110301M-AF	11.2	6.35	3.18	2.8	<0.1	•		0	•
	VBGT110301M-BF	11.2	6.35	3.18	2.8	<0.1	•		0	•
	VBGT110302M-BF	11.2	6.35	3.18	2.8	<0.2	•		•	•
	VBGT110301M-BK	11.2	6.35	3.18	2.8	<0.1	•		0	•
	VBGT110302M-BK	11.2	6.35	3.18	2.8	<0.2	•		0	•
	VBGT110304M-BK	11.2	6.35	3.18	2.8	<0.4	•			•
	VBGT110301M-SK	11.2	6.35	3.18	2.8	<0.1	0			
103/	VBGT110302M-SK	11.2	6.35	3.18	2.8	<0.2	0			
	VBGT110304M-SK	11.2	6.35	3.18	2.8	<0.4	0			
	VBGT110302M-MM	11.2	6.35	3.18	2.8	<0.2	•		0	•
16 17	VBGT110304M-MM	11.2	6.35	3.18	2.8	<0.4	•			•

О Режущие инструмент для обработки мелки

Токарные пластины (позитивные)

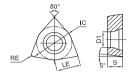


			I	Размерь (мм)	I			Твердые сплав	ы с покрытием	
Кс	од заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125
	VCGT1103005ML-P	11.2	6.35	3.18	2.8	<0.05	0	0		0
	VCGT1103005MR-P	11.2	6.35	3.18	2.8	<0.05	0	0		0
	VCGT110301ML-P	11.2	6.35	3.18	2.8	<0.1	0	0		0
	VCGT110301MR-P	11.2	6.35	3.18	2.8	<0.1	0	0		•
	VCGT1103003L-P	11.2	6.35	3.18	2.8	0.03		0		
	VCGT1103003R-P	11.2	6.35	3.18	2.8	0.03		0		
	VCGT110301L-P	11.2	6.35	3.18	2.8	0.1		0		
	VCGT110301R-P	11.2	6.35	3.18	2.8	0.1		0		
	VCGT110302L-P	11.2	6.35	3.18	2.8	0.2		0		
	VCGT110302R-P	11.2	6.35	3.18	2.8	0.2		•		
	VCGT110304L-P	11.2	6.35	3.18	2.8	0.4		0		
	VCGT110304R-P	11.2	6.35	3.18	2.8	0.4		0		
	VCGT1103005MR-G	11.2	6.35	3.18	2.8	<0.05	•	•		•
	VCGT110302R-G	11.2	6.35	3.18	2.8	0.2		0		
	VCGT1103005ML-S	11.2	6.35	3.18	2.8	<0.05	0	0		•
	VCGT1103005MR-S	11.2	6.35	3.18	2.8	<0.05	0	0		0
	VCGT1103003R-S	11.2	6.35	3.18	2.8	0.03		0		
	VCGT110301L-S	11.2	6.35	3.18	2.8	0.1		•		
	VCGT110301R-S	11.2	6.35	3.18	2.8	0.1		•		
	VCGT110302L-S	11.2	6.35	3.18	2.8	0.2		0		
	VCGT110302R-S	11.2	6.35	3.18	2.8	0.2		•		


	Код заказа		I	Размерь (мм)	I		Твердые сплавы с покрытием				
Кс			IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
	VCGT110301M-AF	11.2	6.35	3.18	2.8	<0.1	•		0	•	
	VCGT080202M-BF	8.3	4.76	2.38	2.3	<0.2	•			•	
	VCGT110301M-BF	11.2	6.35	3.18	2.8	<0.1	•		0	•	
	VCGT110302M-BF	11.2	6.35	3.18	2.8	<0.2	•		•	•	
	VCGT110301M-BK	11.2	6.35	3.18	2.8	<0.1	•		0	•	
	VCGT110302M-BK	11.2	6.35	3.18	2.8	<0.2	•		•	•	
	VCGT110304M-BK	11.2	6.35	3.18	2.8	<0.4	•			•	
	VCGT110302M-MM	11.2	6.35	3.18	2.8	<0.2	•		•	•	
6 2	VCGT110304M-MM	11.2	6.35	3.18	2.8	<0.4	•			•	

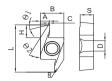
О Режущие инструмент для обработки мелки

Токарные пластины (позитивные)



			Размерь (мм)	I		Твердые сплавы с покрытием				
Код заказа	LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
VPGT1103005ML-P	11.2	6.35	3.18	2.8	<0.05	0	0		0	
VPGT1103005MR-P	11.2	6.35	3.18	2.8	<0.05	•	0		0	
VPGT110301ML-P	11.2	6.35	3.18	2.8	<0.1	0	0		0	
VPGT110301MR-P	11.2	6.35	3.18	2.8	<0.1	•	•		•	
VPGT110302ML-P	11.2	6.35	3.18	2.8	<0.2	0	0		0	
VPGT110302MR-P	11.2	6.35	3.18	2.8	<0.2	•	0		•	
VPGT1103003L-P	11.2	6.35	3.18	2.8	0.03		0			
VPGT1103003R-P	11.2	6.35	3.18	2.8	0.03		0			
VPGT110301L-P	11.2	6.35	3.18	2.8	0.1		0			
VPGT110301R-P	11.2	6.35	3.18	2.8	0.1		•			
VPGT110302L-P	11.2	6.35	3.18	2.8	0.2		•			
VPGT110302R-P	11.2	6.35	3.18	2.8	0.2		•			
VPGT1103005ML-G	11.2	6.35	3.18	2.8	<0.05	0	0		0	
VPGT1103005MR-G	11.2	6.35	3.18	2.8	<0.05	0	0		0	
VPGT110301L-G	11.2	6.35	3.18	2.8	0.1		0			
VPGT110301R-G	11.2	6.35	3.18	2.8	0.1		•			
VPGT110302R-G	11.2	6.35	3.18	2.8	0.2	•	•		•	
VPGT080201M-BK	8.3	4.76	2.38	2.3	<0.1	0			0	
VPGT080202M-BK	8.3	4.76	2.38	2.3	<0.2	0			0	

Шестиугольник 80° с отверстием



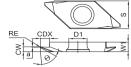
Код заказа			F	Размерь (мм)	ol .		Твердые сплавы с покрытием				
		LE	IC	S	D1	RE	GAT7115	GAT7120	GAT7120A	GAT7125	
	WBGT020101L-P	2.5	3.97	1.59	2.3	0.1		•			
	WBGT020102L-P	2.5	3.97	1.59	2.3	0.2	0	•		0	
	WBGT020104L-P	2.5	3.97	1.59	2.3	0.4	0	•		•	
	WBGTL30202L-P	3.2	4.76	2.38	2.3	0.2		0			
	WBGTL30204L-P	3.2	4.76	2.38	2.3	0.4		0			

Пластины для обработки обратным точением

GSAB

Пластины горизонтальной установки для обработки обратным точением

			P	азмері (мм)	Ы							Твердь	іе сплав	вы с покр	рытием
	Код заказа	А	В	С	D	Н	L	R	S	Θ1	Θ2	GAT7115	GAT7120	GAT7120A	GAT7125
- 4	GSAB15R4025005	2.8	7.0	0.4	3.4	4.3	15.5	0.05	3.97	15°	30°	•	•		•
	GSAB15R4025005M	2.8	7.0	0.4	3.4	4.3	15.5	<0.05	3.97	15°	30°	•	•		•
	GSAB15R4025015	2.8	7.0	0.4	3.4	4.2	15.4	0.15	3.97	15°	30°	•	•		•
	GSAB15R4025015M	2.8	7.0	0.4	3.4	4.2	15.4	<0.15	3.97	15°	30°	•	•		•
4	GSAB15R4045005	4.7	7.0	0.65	3.4	4.3	15.5	0.05	3.97	15°	45°	0	•		0
	GSAB15R4045005M	4.7	7.0	0.65	3.4	4.3	15.5	<0.05	3.97	15°	45°	0	•		0
7	GSAB15R4045015	4.7	7.0	0.65	3.4	4.2	15.4	0.15	3.97	15°	45°	•	•		0
	GSAB15R4045015M	4.7	7.0	0.65	3.4	4.2	15.4	<0.15	3.97	15°	45°	•	•		0
4	GSAB23R5045005	4.7	7.0	0.55	3.4	5.3	23.5	0.05	3.97	15°	40 °	0	•		0
	GSAB23R5045005M	4.7	7.0	0.55	3.4	5.3	23.5	<0.05	3.97	15°	40 °	0	•		0
	GSAB23R5045015	4.7	7.0	0.55	3.4	5.2	23.4	0.15	3.97	15°	40 °	•	•		•
	GSAB23R5045015M	4.7	7.0	0.55	3.4	5.2	23.4	<0.15	3.97	15°	40 °	•	•		0


● В наличии ○ Доступно по запросу

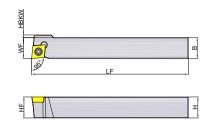
Методы обозначения моделей инструментов для обработки обратным точением

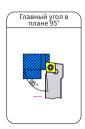
Пластины для обработки обратным точением

GSTB

Пластины вертикальной установки для обработки обратным точением

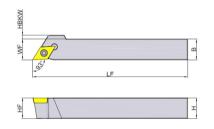
			I	Размерь (мм)	ol					Тверд	ые сплав	ы с покр	ытием
Код	ц заказа	CW	CDX	а	Θ	RE	D1	W1	S	GAT7115	GAT7120	GAT7120A	GAT7125
	GSTB3R15005M	1.5	2.7	0.25	56°	<0.05	5.2	3.0	8.7	•	•		0
	GSTB3R15010M	1.5	2.7	0.25	56°	<0.10	5.2	3.0	8.7	0	•		0
	GSTB3R28005M	2.8	4.6	0.3	56°	<0.05	5.2	3.0	8.7	•	0		0
	GSTB3R28010M	2.8	4.6	0.3	56°	<0.10	5.2	3.0	8.7	•	•		0
	GSTB3R28020	2.8	4.6	0.5	56°	0.20	5.2	3.0	8.7		0		0
F	GSTB4R38005M	3.8	6.3	0.3	56°	<0.05	5.2	4.0	9.5	•	0		0
	GSTB4R38010M	3.8	6.3	0.3	56°	<0.10	5.2	4.0	9.5	•	0		0
	GSTB4R38010M GSTB4R38020M	3.8	6.3	0.5	56°	<0.20	5.2	4.0	9.5	0			0


Ведомость токарных державок


SCLCR/L-Z	SDJCR/L-Z	SVJ*R/L-Z	SVQ*R-Z	SDJCR
P110	P110	P111	P112	P112
SGSAB-4025F	SGSAB-4045F	SGSAB-5045F	GST	GST-RS
P113	P113	P114	P115	P115
		TO TO		

Токарные державки для обработки мелких деталей — без уклонов (позитивные)

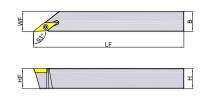
SCLCR/L-Z

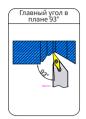


Код заказа			Разме	еры (г	им)		Комплек-	Винт	Ключ	Bec	Налі	ичие
SCLCR/L1010JK06Z	Н	В	LF	HF	WF	HBKW	тующая пластина		Þ	(кг)	R	L
SCLCR/L1010JK06Z	10	10	120	10	10	-	CC**0602**	SI60M025065-03509S	TT07PQ	0.09	•	•
SCLCR/L1010JK09Z	10	10	120	10	10	2.5	CC**09T3**	SI60M040089-05313S	TT15PQ	0.09	•	•
SCLCR/L1212JK09Z	12	12	120	12	12	-	CC**09T3**	SI60M040089-05313S	TT15PQ	0.14	•	•
SCLCR/L1616JK09Z	16	16	120	16	16	-	CC**09T3**	SI60M040089-05313S	TT15PQ	0.24	•	•

● В наличии ○ Доступно по запросу

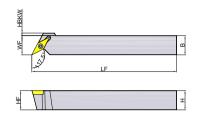
SDJCR/L-Z


Var aayaaa			Разм	еры (г	им)		Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	HF	WF	HBKW	тующая пластина		Þ	(кг)	R	L
SDJCR/L1010JK07Z	10	10	120	10	10	-	DC**0702**	SI60M025065-03509S	TT07PQ	0.09	•	•
SDJCR/L1010JK11Z	10	10	120	10	10	3	DC**11T3**	SI60M040089-05313S	TT15PQ	0.09	•	•
SDJCR/L1212JK11Z	12	12	120	12	12	1	DC**11T3**	SI60M040089-05313S	TT15PQ	0.14	•	•
SDJCR/L1616JK11Z	16	16	120	16	16	-	DC**11T3**	SI60M040089-05313S	TT15PQ	0.24	•	•


lacktriangle В наличии \bigcirc Доступно по запросу

Токарные державки для обработки мелких деталей — без уклонов (позитивные)

SVJ*R/L-Z



Vол ээмэээ			Разм	еры (м	им)		Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	HF	WF	HBKW	тующая пластина		Þ	(кг)	R	L
SVJBR/L1010JK11Z	10	10	120	10	10	-	VB**1103**	SI60M025065-03509S	TT07PQ	0.09	•	•
SVJBR/L1212JK11Z	12	12	120	12	12	-	VB**1103**	SI60M025065-03509S	TT07PQ	0.14	•	•
SVJBR/L1616JK11Z	16	16	120	16	16	-	VB**1103**	SI60M025065-03509S	TT07PQ	0.24	•	•
SVJCR/L1010JK11Z	10	10	120	10	10	-	VC**1103**	SI60M025065-03509S	TT07PQ	0.09	•	•
SVJCR/L1212JK11Z	12	12	120	12	12	-	VC**1103**	SI60M025065-03509S	TT07PQ	0.14	•	•
SVJCR/L1616JK11Z	16	16	120	16	16	-	VC**1103**	SI60M025065-03509S	TT07PQ	0.24	•	•
SVJPR/L1212JK11Z	12	12	120	12	12	-	VP**1103**	SI60M025065-03509S	TT07PQ	0.14	•	•
SVJPR/L1616JK11Z	16	16	120	16	16	-	VP**1103**	SI60M025065-03509S	TT07PQ	0.24	•	•

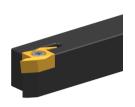
Токарные державки для обработки мелких деталей — без уклонов (позитивные)

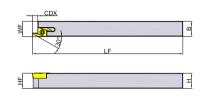
SVQ*R-Z

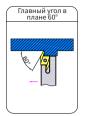
Von 22/222				змерь (мм)	ol		Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	HF	WF	HBKW	тующая пластина		Þ	(кг)	R	L
SVQCR1010JK11Z	10	10	120	10	10	8	VC**1103**	SI60M025065-03509S	TT07PQ	0.09	•	
SVQCR1212JK11Z	12	12	120	12	12	6	VC**1103**	SI60M025065-03509S	TT07PQ	0.14	•	
SVQCR1616JK11Z	16	16	120	16	16	2	VC**1103**	SI60M025065-03509S	TT07PQ	0.24	•	
SVQPR1010JK08Z	10	10	120	10	10	4	VP**0802**	SI60M020050-02806S	TT06PQ	0.09	•	
SVQPR1010JK11Z	10	10	120	10	10	8	VP**1103**	SI60M025065-03509S	TT07PQ	0.09	•	
SVQPR1212JK08Z	12	12	120	12	12	2	VP**0802**	SI60M020050-02806S	TT06PQ	0.14	•	
SVQPR1212JK11Z	12	12	120	12	12	6	VP**1103**	SI60M025065-03509S	TT07PQ	0.14	•	
SVQPR1616JK08Z	16	16	120	16	16	-	VP**0802**	SI60M020050-02806S	TT06PQ	0.24	•	
SVQPR1616JK11Z	16	16	120	16	16	2	VP**1103**	SI60M025065-03509S	TT07PQ	0.24	•	

● В наличии ○ Доступно по запросу

SDJCR

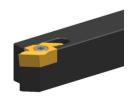


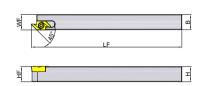


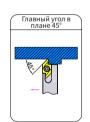

Van aavaaa				змерь (мм)	I		Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	HF	WF	HBKW	тующая пластина		Þ	(кг)	R	L
SDJCR1216JK11F15	12	16	120	12	15	12	DC**11T3**	SI60M040089-05313S	TT15PQ	0.18	•	
SDJCR1620JK11F15	16	20	120	16	15	8	DC**11T3**	SI60M040089-05313S	TT15PQ	0.30	•	

Токарные державки для обработки мелких деталей — обработка обратным точением (GSAB)

SGSAB-4025F

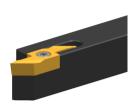


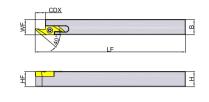


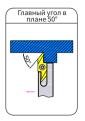

Код заказа				иеры ім)			Комплектую-	Винт	Ключ	Bec	Налі	ичие
	Н	В	LF	HF	WF	CDX	щая пластина		Þ	(кг)	R	L
SGSABR1010JK4025F	10	10	120	10	10.2	4.2	GSAB15R4025**	SI60M030072-04210S	TT09PQ	0.09	•	
SGSABR1212JK4025F	12	12	120	12	12.2	4.2	GSAB15R4025**	SI60M030072-04210S	TT09PQ	0.14	•	
SGSABR1616JK4025F	16	16	120	16	16.2	4.2	GSAB15R4025**	SI60M030072-04210S	TT09PQ	0.24	•	

lacktriangle В наличии \bigcirc Доступно по запросу

SGSAB-4045F

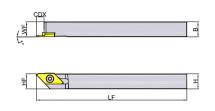


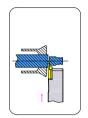



Van aavaaa				меры им)			Комплектую-	Винт	Ключ	Bec	Налі	ичие
Код заказа SGSABR1010JK4045F	Н	В	LF	HF	WF	CDX	щая пластина		Þ	(кг)	R	L
SGSABR1010JK4045F	10	10	120	10	10.2	4.2	GSAB15R4045**	SI60M030072-04210S	TT09PQ	0.09	•	
SGSABR1212JK4045F	12	12	120	12	12.2	4.2	GSAB15R4045**	SI60M030072-04210S	TT09PQ	0.14	•	
SGSABR1616JK4045F	16	16	120	16	16.2	4.2	GSAB15R4045**	SI60M030072-04210S	TT09PQ	0.24	•	

Токарные державки для обработки мелких деталей — обработка обратным точением (GSAB)

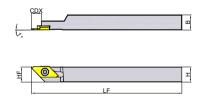
SGSAB-5045F

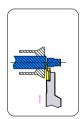



Vод эрүүгэ				меры ім)			Комплектую-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	HF	WF	CDX	щая пластина		Þ	(кг)	R	L
SGSABR1010JK5045F	10	10	120	10	10.2	8.2	GSAB23R5045**	SI60M030072-04210S	TT09PQ	0.09	•	
SGSABR1212JK5045F	12	12	120	12	12.2	8.2	GSAB23R5045**	SI60M030072-04210S	TT09PQ	0.14	•	
SGSABR1616JK5045F	16	16	120	16	16.2	8.2	GSAB23R5045**	SI60M030072-04210S	TT09PQ	0.24	•	

Токарные державки для обработки мелких деталей — обработка обратным точением

GST




Van aayaaa				меры им)			Комплектую-	Винт	Ключ	Bec	Нал	ичие
Код заказа	Н	В	LF	HF	WF	CDX	щая пластина		Þ	(кг)	R	L
GSTR/L1010JK3	10	10	120	10	10	6	GST*3R**	SSAM045095Q	TT10P	0.09	•	0
GSTR/L1212JK3	12	12	120	12	12	6	GST*3R**	SSAM045095Q	TT10P	0.14	•	0
GSTR/L1616JK3	16	16	120	16	16	6	GST*3R**	SSAM045095Q	TT10P	0.24	•	0
GSTR/L2020JK3	20	20	120	20	20	6	GST*3R**	SSAM045095Q	TT10P	0.40	•	0
GSTR/L1010JK4	10	10	120	10	10	8	GST*4R**	SSAM045095Q	TT10P	0.09	•	0
GSTR/L1212JK4	12	12	120	12	12	8	GST*4R**	SSAM045095Q	TT10P	0.14	•	0
GSTR/L1616JK4	16	16	120	16	16	8	GST*4R**	SSAM045095Q	TT10P	0.24	•	0
GSTR/L2020JK4	20	20	120	20	20	8	GST*4R**	SSAM045095Q	TT10P	0.40	•	0

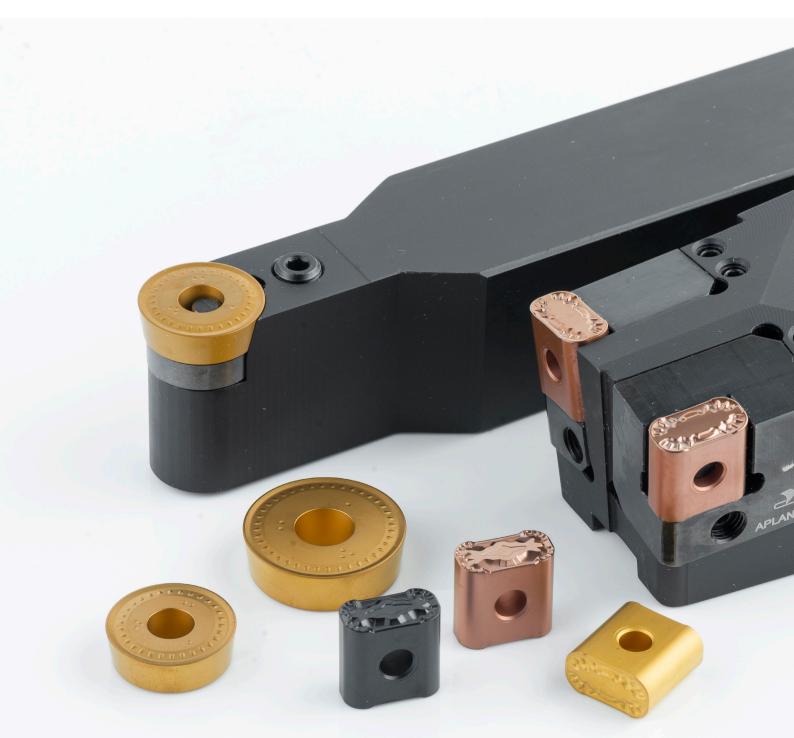
● В наличии ○ Доступно по запросу

GST-RS

Man aguaga				меры им)			Комплектую-	Винт	Ключ	Bec	Наличие	
Код заказа	Н	В	LF	HF	WF	CDX	щая пластина		Þ	(кг)	R	L
GSTR/L1010JK3-RS	10	10	120	10	7.2	6	GST*3R/L**	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK3-RS	12	12	120	12	7.2	6	GST*3R/L**	SSAM045070Q	TT10PQ	0.14	•	0
GSTR/L1010JK4-RS	10	10	120	10	7.2	8	GST*4R/L**	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK4-RS	12	12	120	12	7.2	8	GST*4R/L**	SSAM045070Q	TT10PQ	0.14	•	0

Рекомендуемые параметры резания

	M	T	Геоме-		Нижний пред	ел-рекомендуемый-ве	ерхний предел	
ISO	Материал заготовки	Твердость (НВ)	трия канавки	Сплав	Линейная скорость Vc(м/мин.)	Глубина резания ар (мм)	Подача f (мм/об)	
				GAT7115	60-120-180			
			Р	GAT7120	40-90-140	0.03-0.1-0.5	0.03-0.1-0.18	
				GAT7125	40-90-150			
				GAT7115	60-120-180			
			G	GAT7120	40-90-140	0.3-0.8-2.5	0.01-0.05-0.08	
				GAT7125	40-90-150			
				GAT7115	60-120-180			
			S	GAT7120	40-90-140	0.3-0.8-2	0.08-0.12-0.25	
				GAT7125	40-90-150			
			AF	GAT7115	60-120-180			
				GAT7125	40-90-150	0.02-0.16-0.2	0.03-0.08-0.12	
P	Сталь	≤300		GAT7120A	50-100-160			
	Сталь	≪300		GAT7115	60-120-180			
			AK	GAT7125	40-90-150	0.3-1.4-2.5	0.02-0.07-0.12	
				GAT7120A	50-100-160			
				GAT7115	60-120-180			
			BF	GAT7125	40-90-150	0.2-0.7-1.2	0.02-0.06-0.12	
				GAT7120A	50-100-160			
				GAT7115	60-120-180			
			BK	GAT7125	40-90-150	0.8-1.6-2.5	0.03-0.08-0.12	
				GAT7120A	50-100-160			
				GAT7115	60-120-180			
			ММ	GAT7125	40-90-150	0.8-1.8-3	0.03-0.06-0.1	
				GAT7120A	50-100-160			


Рекомендуемые параметры резания

	Маториал	Трордости	Геоме-		Нижний пред	ел-рекомендуемый-ве	ерхний предел	
ISO	Материал заготовки	Твердость (НВ)	трия канавки	Сплав	Линейная скорость Vc(м/мин.)	Глубина резания ар (мм)	Подача f (мм/об)	
				GAT7115	60-100-150			
			Р	GAT7120	40-80-120	0.03-0.1-0.5	0.03-0.1-0.18	
				GAT7125	40-80-130			
				GAT7115	60-100-150			
			G	GAT7120	40-80-120	0.3-0.8-2.5	0.01-0.05-0.08	
				GAT7125	40-80-130			
			GAT7115	60-100-150				
			S	GAT7120	40-80-120	0.3-0.8-2	0.08-0.12-0.25	
				GAT7125	40-80-130			
M	Нержавею- щая сталь	≤300	AF	GAT7115	60-100-150	0.02-0.16-0.2	0.03-0.08-0.12	
	7		Ar	GAT7125	40-80-130	0.02-0.16-0.2	0.03-0.06-0.12	
			AK	GAT7115	60-100-150	0.3-1.4-2.5	0.02-0.07-0.12	
			AN	GAT7125	40-80-130	0.5-1.4-2.5	0.02-0.07-0.12	
			BF	GAT7115	60-100-150	0.2-0.7-1.2	0.02-0.06-0.12	
			DF	GAT7125	40-80-130	0.2-0.7-1.2	0.02-0.06-0.12	
			BK	GAT7115	60-100-150	0.8-1.6-2.5	0.03-0.08-0.12	
			Dr	GAT7125	40-80-130	0.0-1.0-2.3	0.05-0.06-0.12	
			MM	GAT7115 60-100-150		0.8-1.8-3	0.03-0.06-0.1	
			IVIIVI	GAT7125	40-80-130	0.0-1.0-3	0.05-0.06-0.1	

			F		Нижний	предел-рекомен	ндуемый-верхни	й предел	
ISO	Материал заготовки	Твердость (НВ)	Геоме- трия канавки	Сплав	Линейная скорость Vc(м/мин.)	Глубина резания ар (мм)	Подача для обработки канавок f1 (мм/ об)	Поперечная подача f2 (мм/ об)	
				GAT7115	60-120-180				
			GSAB	GAT7120	40-90-140	0.5-2.0-5.0	0.01-0.02-0.03	0.01-0.05-0.1	
D	Р Сталь	≤300		GAT7125	40-90-150				
		₹500	GSTB	GAT7115	60-120-180		0.01-0.02-0.03		
				GAT7120	40-90-140	0.5-2.5-6.0		0.01-0.05-0.15	
				GAT7125	40-90-150				
				GAT7115	60-100-150				
			GSAB	GAT7120	40-80-120	0.5-2.0-5.0	0.01-0.02-0.03	0.01-0.05-0.1	
ΛЛ	Нержавеющая сталь	≤300		GAT7125	40-80-130				
141		≪300		GAT7115	60-100-150				
			GSTB	GAT7120	40-80-120	0.5-2.5-6.0	0.01-0.02-0.03	0.01-0.05-0.15	
				GAT7125	40-80-130				

MEMO	

Токарные инструменты в отрасли рельсового транспорта

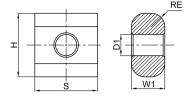
Область применения

Пластины для обработки новых колесных пар, серия RCMX	Пластины	ерия LNMX	
Универсальный	Чистовая обработка	Получистовая обработка	Черновая обработка
RR	HF	НМ	HR
ap[mm] 15 12 9 6 3 0 0.3 0.6 0.9 1.2 1.5 1.8 f[mm/rev]	ap [m] 15 12 9 6 3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 f[m/rev]	ap[mm] 15 12 9 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 f[mm/rev]	ap[m] 15 12 9 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 f[mm/rev]

Токарные пластины (позитивные)

RCMX

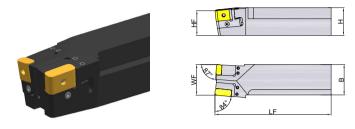
Круг с отверстием



		Разм	иеры		Твердые сплавы с покрытием				
Код заказа	IC	S	D1	RE	GP1105R	GP1105H	GP1105	GP1115	
RCMX160600-RR	16	6.35	5.5	8		0			
RCMX200600-RR	20	6.35	6.5	10		0			
RCMX250700-RR	25	7.94	7.2	12.5		•			
RCMX320900-RR	32	9.52	9.5	16		0			
RCMX250700-RR1	25	7.94	7.2	12.5	•				
	RCMX160600-RR RCMX200600-RR RCMX250700-RR RCMX320900-RR	RCMX160600-RR 16 RCMX200600-RR 20 RCMX250700-RR 25 RCMX320900-RR 32	Код заказа IC S RCMX160600-RR 16 6.35 RCMX200600-RR 20 6.35 RCMX250700-RR 25 7.94 RCMX320900-RR 32 9.52	IC S D1 RCMX160600-RR 16 6.35 5.5 RCMX200600-RR 20 6.35 6.5 RCMX250700-RR 25 7.94 7.2 RCMX320900-RR 32 9.52 9.5	Код заказа IC S D1 RE RCMX160600-RR 16 6.35 5.5 8 RCMX200600-RR 20 6.35 6.5 10 RCMX250700-RR 25 7.94 7.2 12.5 RCMX320900-RR 32 9.52 9.5 16	Код заказа IC S D1 RE 8 RCMX160600-RR 16 6.35 5.5 8 RCMX200600-RR 20 6.35 6.5 10 RCMX250700-RR 25 7.94 7.2 12.5 RCMX320900-RR 32 9.52 9.5 16	Код заказа IC S D1 RE 50 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Код заказа IC S D1 RE 89 14 6 14 6 14 6 14 6 14 14 14 14 14 14 14 14 14 14 14 14 14	

Токарные пластины (негативные)

LNMX

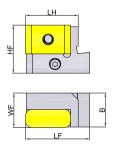

Пластины вертикальной установки

				Размеры		Твер	дые сплав	ы с покры	тием	
	Код заказа	Н	W1	S	D1	RE	GP1105R	GP1105H	GP1105	GP1115
330	LNMX191940-HF	19.05	10	19.05	6.35	4			0	0
319	LNMX191940-HM	19.05	10	19.05	6.35	4			0	0
Some of the second	LNMX301940-HM	30	12	19.05	6.35	4	0		0	0
Supe	LNMX301940-HR	30	12	19.05	6.35	4	0		0	0
3 25										

Державки для ремонта колесных пар

TXZNR/L

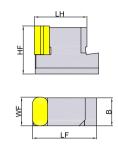
Код заказа	Размеры					Комплектующий	Винт	Ключ	Bec	Наличие	
	Н	В	LF	HF	WF	картридж	Бин	10110 1	(кг)	R	L
TXZNR/L5055X-A	50	55	210	44	55	APLNR/L3223-19 APLNR/L3223-30 APLFNR/L3219-19	STCM060180Y	TH30LY	3.8	0	0


Примечания: Державка поставляется без картриджа, который должен быть приобретен отдельно.

● В наличии ○ Доступно по запросу

Комплектующий картридж державки для ремонта колесных пар

APLANR/L



Код заказа			Разм	еры		Комплектую-		Винт рычага	Ключ	Bec	Нали	ичие
код заказа	В	LH	LF	HF	WF	щий картридж	Рычаг	Винт	ronon	(кг)	R	L
APLANR/L3223-19	22.6	35	42.7	32	TH30LH	LNMX19**	LA5Y	SLM080250FY	TH30LY	0.17	0	0
APLANR/L3223-30	22.6	35	42.7	32	TH30LH	LNMX30**	LA5Y	SLM080250FY	TH30LY	0.15	0	0

Комплектующий картридж державки для ремонта колесных пар

APLFNR/L

Кол ээхэээ			Разм	еры		Комплектую-	Рычаг	Винт рычага	Ключ	Bec	Наличие	
Код заказа	В	LH	LF	HF	WF	щая пластина	Рычаі	винт рычага	КЛЮЧ	(кг)	R	L
APLFNR/L3219-19	18.6	35	42.7	32	19.05	LNMX19**	LA5Y	SLM080250FY	TH30LY	0.13	0	0

Рекомендуемые параметры резания (для позитивных пластин)

Обраб	Батываемый	Твердость	D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Режим	Струж-		Минимальное - оптимальное - максимальное				
материал		материала		резания	ющая канавка	Сплав	Скорость резания Vc (м/мин.)	Глубина резания ар (мм)	Подача f (мм/об)		
D	CTOR	> UP240	Чистовая- черновая обработка	Универ- сальный	RR	GP1105H	50-100-150	2.00-7.50-15.0	0.30-1.00-1.80		
ľ	Сталь	≥ HB240	Чистовая- черновая обработка	Универ- сальный	RR1	GP1105R	50-100-150	2.00-7.50-15.0	0.30-1.00-1.80		

Рекомендуемые параметры резания (негативные)

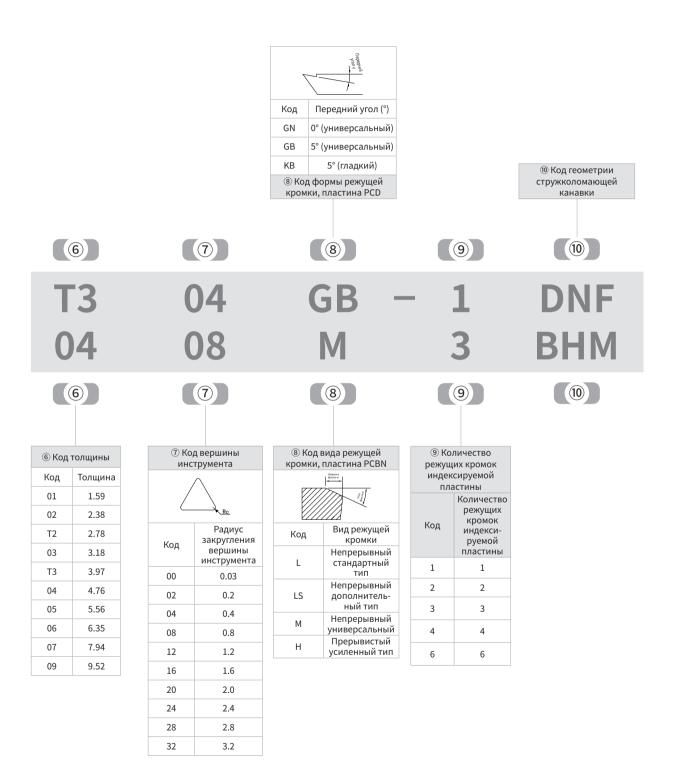
Обраб	атываемый	Твердость	Диапазон	Режим	Струж-	C====	Нижний пред	ел-рекомендуе предел	мый-верхний
	атериал	материа- ла	резания	резания	ющая канавка	Сплав	Скорость резания Vc(м/мин.)	Глубина резания ар (мм)	Подача f (мм/об)
						GP1105R	40-70-100	0.50-2.00-4.00	0.30-0.8-1.50
			Чистовая обработка	Универ- сальный	HF	GP1105	40-70-100	0.50-2.00-4.00	0.30-0.8-1.50
			оориоотки			GP1115	40-70-100	0.50-2.00-4.00	0.30-0.8-1.50
			Получисто-			GP1105R	40-70-100	0.80-5.00-10.0	0.5-1.00-2.00
P	Сталь	≥ HB240	вая обра-	Универ- сальный	НМ	GP1105	40-70-100	0.80-5.00-10.0	0.5-1.00-2.00
			ботка			GP1115	40-70-100	0.80-5.00-10.0	0.5-1.00-2.00
						GP1105R	40-70-100	2.00-7.50-12.0	0.80-1.30-2.1
			Черновая обработка	Универ- сальный	HR	GP1105	40-70-100	2.00-7.50-12.0	0.80-1.30-2.1
			00p2001110			GP1115	40-70-100	2.00-7.50-12.0	0.80-1.30-2.1

E

Токарные пластины из PCBN/PCD

Ведомость пластин PCBN/PCD

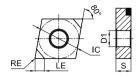
Вид	Особенность		Ромб 80°	Ромб 55°	Треугольник 60°	Ромб 35°	Шестиу- гольник 80°	Четыреху- гольник 90°	Круг 360°
		Нега- тивные							
		PCBN	CNGA	DNGA	TNGA	VNGA	WNGA		
	• Для реза-		P130	P131	P132	P133	P133		
Свар-	ния с более высокой точ- ностью и бо- лее длитель- ным сроком	Пози- тивные		3		3			
ной	службы; • Разноо-	PCBN	CCGW	DCGW	TCGW/TPGW	VBGW/VCGW			
	бразные		P134	P134	P135	P137			
	виды ин- струментов.	Пози-							
		PCD	CCGW	DCGW	TCGW/TPGW	VCGW			RDEW
			P145	P146	P147- 148	P149			P150
Столб-	• Двухсто- роннее использова- ние, более высокая эко-	Нега-			<u> </u>		ê		
чатый	номичность;	тивные РСВN	CNGA	DNGA	TNGA	VNGA	WNGA		
	• Надежная стабиль- ность свар- ки.	. 05.1	P138	P138	P139	P139	P140		
	• Целое	Нега- тивные							
	исполнение, можно об-	PCBN	CNGN	DNGN			WNGN	SNGN	RNGN
Целый	рабатывать с большим		P141	P141			P142	P142	P143
целыи	припуском или в не- стабильных условиях.	Пози-							
		PCBN							RCGN
									P143


Ведомость пластин PCBN/PCD

Контур	Серия	Применение	Ширина (мм)	Материал	Стр.
56	GB	Прецизионная обработка канавок	1.25-4	PCBN	Подлежит определению

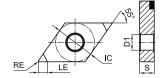
Правила обозначения моделей токарных пластин из PCBN/PCD

од	Фс	рма	Угол при вершине и				_												
Н	Праві	ильный	струмента 120°	(°)	.,	Задни	1Й	Код	Высота	<u> </u>	уск (ми	и) Вписа	аннаа	Выс		Допусн	(мм)	Впис	ациа
н О	шестиу Праві	/гольник ильный	120°		Код	угол (3°		(класс)	высота вершины инструмент		лщи- на	вписа окруж (Ø	ность	верш	ины	Толщі	ина	окруж	
- -		угольник ильный			В	5°		Α	±0.005		0.025	±0.		±0.0		±0.0	01		.001
		гольник	108°	\bigcirc	С	7°		F	±0.005	±	0.025	±0.	013	±0.0	0002	±0.0	01	±0.	0005
		адрат	90°		D	15°		С	±0.013	±	0.025	±0.	025	±0.0	0005	±0.0	01	±0	.001
		ильный ольник	60°		Е	20 °		Н	±0.013	±	0.025	±0.	013	±0.0	0005	±0.0	01	±0.	0005
			80°		F	25°		Е	±0.025	±	0.025	±0.	025	±0.	001	±0.0	01	±0	.001
	P	омб	55°	$ \square$	G	30 °		G	±0.025	±	0.13	±0.	025	±0.	001	±0.0	05	±0	.001
			35°		N	0°		J	±0.005	±	0.025	±0.05	5~0.13	±0.0	0002	±0.0	01	±0.002	2~0.
					Р	11 °		K	±0.013	±	0.025	±0.05	5~0.13	±0.0	0005	±0.0	01	±0.002	2~0.
		угольник	80°		0	Прочі	1e	L	±0.025	±	0.025	±0.05	5~0.13	±0.	001	±0.0	01	±0.002	2~0.
		угольник	90°					М	±0.08~0.18	3 ±	0.13	±0.05	5~0.13	±0.003	~0.007	±0.0	05	±0.002	2~0.
		ллело- амм	85°					N	±0.08~0.18	3 ±0	0.025	±0.05	5~0.13	±0.003	~0.007	±0.0	01	±0.002	2~0
		руг				7	. [U	±0.13~0.38	3 ±	0.13	±0.08	3~0.25	±0.005	~0.015	±0.0	05	±0.00	3~0
		① Код ф	ормы			ц заднег	-о					3 I	Код точ	ности					
		- 111				/гла													
								[
		(1)			2)							(4)				5	1		
																	,		
											_								
												W							
									J		1	VV							
												Λ			-1	.6			
				- III															
					A				7						- 4	. U			
		-			N				7		,	A			ď	. U			
												A							
					2)							4				5			
												(4) 							
)							од дли	ины ре		Кромки	1 по ISO					
Н (од стру		це канавк	и · отверстия						од дли	ины ре		кромки	1 по ISO					
H ((С отвер-	жколомаюц	Струж-		2)	R)	5		(§) K	^		ежущей	кромки	no ISO) 		
) H	С отвер- стием или без		Струж- колома- ющая		2)	$\stackrel{\smile}{ ightarrow}$	<u></u>		(§) K(Ŵ.	Δ	ежущей (мм)	7			5)	<u> </u>		сан окр
	С отвер-	жколомаюц Форма отвер-	Струж- колома-	и · отверстия	(Kop	Pas-	Код		(§) K	Ŵ Kon		ежущей (мм)	222	л по ISO	Kon		Код	Раз-меры	сан окр но
	С отвер- стием или без отвер-	жколомаюц Форма отвер-	Струж- колома- ющая	и · отверстия		<u></u> Раз-	-	Pas-	(5) K	Ŵ Kon	Раз-	ежущей (мм) Код F	⊇ Раз- іеры Ко	Pa3	Код	Pa3-	<u>_</u>		сан окр но (м
	С отвер- стием или без отвер-	жколомаюц Форма отвер-	Струж- колома- ющая канавка Нет Односто-	и · отверстия		<u></u> Раз-	Код	Раз-меры	© Код Раз- меры	Ŵ Kon	Раз-	ежущей (мм) Код F м	⊇ Раз- іеры Ко	ДД Раз мер 4 4.8	Код	Pa3-	<u>_</u>		сан окр но (м
	С отверстием или без отверстия	жколомаюц Форма отвер-	Струж- колома- ющая канавка Нет Односто- ронний Двухсто-	и · отверстия Форма		<u></u> Раз-	Код 03 04	Раз- меры 3.97 4.76	© Код Размеры 03 4.0 04 4.8	Код ,	Раз-меры	ежущей (мм) Код F м 06 08 6	Раз- іеры Ко 6.9 4 8.2 5	Раз мер 4 4.8 5 5.8	Код	Pa3-	<u>_</u>		сан ок нс (м 3
	С отверстием или без отверстия	жколомаюц Форма отвер-	Струж- колома- ющая канавка Нет Односто- ронний Двухсто- роннее	Форма	Кор	Раз- меры	Код 03 04 05	Раз- меры 3.97 4.76 5.56	© Код Размеры 03 4.0 04 4.8 05 5.6	Код 03	Раз-меры	ежущей (мм) Код	Раз- веры Ко 6.9 4 8.2 5 	Раз мер 4.8 5 5.8 6 6.8	Код	Раз-меры	<u>/</u> к	меры	сан окр но (м 3. 4.
	С отверстием или без отверстия	форма отверстия	Струж- колома- ющая канавка Нет Односто- ронний Двуксто- роннее Нет	Форма	(Код 7 7 05 7 06	Раз-	Код 03 04	Раз- меры 3.97 4.76	© Код Размеры 03 4.0 04 4.8	Код ,	Раз-меры	ежущей (мм) Код F м м об	Раз- іеры Ко 6.9 4 8.2 5	Раз мер 4 4.8 5 5.8 65 6.8	Код	Раз-меры	Код	меры	сан окр но (м 3. 4.
	С отверстием или без отверстия	жколомаюц Форма отвер-	Струж- колома- ющая канавка Нет Односто- ронний Двуксто- роннее Нет Односто-	Форма	(Код 7 7 05 7 06	Раз- меры	Код 03 04 05	Раз- меры 3.97 4.76 5.56	© Код Размеры 03 4.0 04 4.8 05 5.6	Код 03	Раз-меры	ежущей (мм) Код	Раз- неры Ко 6.9 4 8.2 5 	Раз мер 4.8 5 5.8 5 5.8 5 6.8 5 7 7.8	Код	Раз-меры	<u>/</u> к	меры	сан окр нс (м 3 4
	С отверстием или без отверстия	жколомаюц Форма отверстия —	Струж- колома- ющая канавка Нет Односто- ронний Двуксто- ронний Двуксто-	Форма	(Kop 7 7 05 7 06 08 08	Раз- меры 5	Код 03 04 05 06 07	Раз- меры 3.97 4.76 5.56 6.35 7.94	© KOD Pas-Mepbil 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1	Код 03 04 05 	Раз- меры 3.8 4.3 5.4	Код F м м м м м м м м м м м м м м м м м м	Раз- коеры Коеры	РА Размер 4 4.8 5 5.8 5 6.8 7 7.8 9 9.7	Код — — — — — — — — — — — — — — — — — — —	Размеры	Код		сан окј но (м 3. 4.
T	С отверстием или без отверстия	форма отверстия — Цилиндрическое отверсти	Струж- колома- ющая канавка Нет Односто- ронний Двуксто- роннее Нет Односто- ронний Двуксто-	Форма	(Kop 7 7 05 7 06 08 09 09 09	Раз- меры 5 6 8 9.525	Код 03 04 05 06 07 09	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525	© KOA Pas- KOA Pas- Mepыl 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7	 03 04 05 06	Раз- меры 3.8 4.3 5.4 6.5	ежущей (мм) Код	Раз- ко 6.9 4 8.2 5 9.6 6 11 7 13.8 9	Pas Mep A 4.8 5 5.8 5.8 6 6.8 6 7 7.8 9 9.7	Код	Размеры		 19.7	сан окр но (м 3. 4. 5.
	С отверстием или без отверстия	Форма отверстия — Цилиндрическое отверсти Частично цилиндрическое отверстие	Струж- колома- ющая канавка Нет Односто- ронний Двуксто- роннее Нет Односто- ронний Двуксто-	и · отверстия Форма	(Код 7 О5 7 О6 7 О8 08 О9 7 10	Раз- меры 5 6 8 9.525	Код 03 04 05 06 07 09	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525	© KOA Pas- ———————————————————————————————————	Код , 03 04 05 06	Раз- меры 3.8 4.3 5.4 6.5	ежущей (мм) Код	Раз- еры Ко 6.9 4 8.2 5 11 7 13.8 9 16.5 1	Page 14 4.8 65 5.8 65 6.8 65 6.8 7 7.8 9 9.7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Код	Размеры		 19.7	санокр но (м 3. 4. 5. 6. 7.
T	С отверстием или без отверстия	Форма отверстия — Цилиндрическое отверстие Частично цилиндрическое отверстие с односторонним углом	Струж- колома- ющая канавка Нет Односто- ронний Двухсто- роннее Нет Односто- ронний Двухсто-	Форма	(Kop 7	Раз- меры 5 6 8 9.525 10	Код 03 04 05 06 07 09	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525 	© Код Размеры 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7	Код ,	Раз- меры 3.8 4.3 5.4 6.5	ежущей (мм) Код	Раз- реры Ко 6.9 4 8.2 5 11 7 13.8 9 16.5 1	РА Размер 4 4.8 5 5.8 6 6.8 7 7.8 9 9.7 1 11.6	Код	Размеры		 19.7	санокр но (м 3. 4. 5. 6. 7.
	С отверстием или без отверстия	Форма отверстия — Цилиндрическое отверстие Частично цилиндрическое отверстие содносторонним углом 40°-60°	Струж- колома- ющая канавка Нет Односто- ронний Двухсто- ронний Двухсто- ронний Двухсто- роннее Нет Односто- роннее	Форма	(Kop 7 7 05 7 06 7 06 09 10 12	Раз- меры 5 6 8 9.525	Код 03 04 05 06 07 09	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525	© KOA Pas- ———————————————————————————————————	03 04 05 06 08	Раз- меры 3.8 4.3 5.4 6.5	ежущей (мм) Код	Раз- еры Ко 6.9 4 8.2 5 11 7 13.8 9 16.5 1	Размер 4.86 5.86 6.66 7.78 9.97 1.11.6 5.15.5	Код	Размеры		 19.7	Carron, Carron
	С отверстием или без отверстия Нет	Форма отверстия — Цилиндрическое отверстие односторонним углом 40°-60° Частично цилиндрическое	Струж- колома- ющая канавка Нет Односто- ронний Двухсто- ронний Двухсто- ронний Двухсто- ронний Нет	Форма	(Kop 7 05 7 06 08 09 7 10 12 12 12	Раз- меры 5 6 9.525 10 12	Код 03 04 05 06 07 09 12	Раз- меры 3.97 4.76 6.35 7.94 9.525 	© Код Размеры 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7 12 12.9	03 04 05 06 08	Раз- меры 3.8 4.3 5.4 6.5 8.7	ежущей (мм) Код	Раз- неры Ко 6.9 4 8.2 5 11 7 13.8 9 16.5 1 22 1	Pas Mep H 4.88 5 5.8 5 5.8 5 5.8 5 5 5 5 5 5 5 5 5	Код	Размеры		 19.7	санокр но (м 3. 4. 5. 6. 7. 9.1. 11. 15.
	С отверстием или без отверстия	Форма отверстия — Цилиндрическое отверстие с односторонним углом 40°-60° Частично цилиндрическое отверстие с односторонскоронского отверстие с односторонское отверстие ское отверстие ское отверстие с двухсторон-	Струж- колома- колома- кодиря канавка Нет Односто- ронний Двужсто- ронное Нет Односто- ронное Нет Односто- ронное Нет Односто-	Форма Форма	(Kop 7	Размеры 5 6 8 9.525 10 12 12.7 15.875 16 19.05	Код 03 04 05 06 07 12 15 19	Раз- меры 3.97 4.76 5.56 9.525 12.7 15.875 19.05	© Код Размеры 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7 12 12.9 16 16.1 19 19.3	—————————————————————————————————————	Раз-меры 3.8 4.3 5.4 6.5 10.9 13	ежущей (мм) Код	2-2-3-3-4 Ko 6.9 4 8.2 5 5 6.9 4 8.2 5 5 6 6.9 4 8.2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Pas Mep H 4.8 6 5.8 6.8 6.8 6.8 6.9 9.7 7.8 6 6.8 6.9 9.7 6 6.9 9.	Код 111	Раз- меры 11.2 16.6 22.1	Код 16	меры 19.7 	сан окр ноо (м 3. 4. 5. 6. 7. 9.!! 11. 15.
	С отверстием или без отверстия Нет	Форма отверстия — Цилиндрическое отверстие Частично цилиндрическое отверстие содносторонним углом 40°-60° Частично цилиндрическое отверстиго	Струж- колома- колома- колома- колома- колома- колома- колома- колома- колома- Односто- ронний Двухсто- ронний Двухсто- роннее Нет Односто- роннее Нет Односто- роннее Нет	Форма	(Kop 7	Размеры 5 6 8 9.525 10 12 12.7 15.875 16	Код 03 04 05 06 07 09 12 15 19	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525 12.7 15.875 	© KOA Pas-Mepы 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 12 12.9 16 16.1 19 19.3	03 04 05 08 10	Раз-меры 3.8 4.3 5.4 6.5 8.7 10.9	ежущей (мм) Код	2-33- kepbi Ko 6.9 4 8.2 5 9.6 6 11 7 13.8 9 16.5 1 22 1 27.5 1	Pas Mep 4.8 6.5 5.8 6.5 5.8 6.7 7.8 6.9 9.7	Код	Раз- меры 11.2 16.6 22.1	Код		Cah Oklind (N 3. 4. 5. 6. 7. 9 11. 15. 11.
	С отверстием или без отверстия Нет	Форма отверстия Форма отверстия Частично цилиндрическое отверстие с односторонним углом 40°-60° Частично цилиндрическое отверстие с двухсторонним углом 40°-60°	Струж- колома- колома- ющая канавка Нет Односто- ронний Двухсто- ронний Двухсто- ронний Двухсто- ронний Двухсто- роннее Нет Односто- ронний Нет	Форма Форма	(Kop 7	В 8 9.525 10 12 12.7 15.875 16 19.05 20	Код 03 04 05 06 07 09 12 15 19	Раз- меры 3.97 4.76 5.56 9.525 12.7 15.875 19.05	© Код Размеры 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7 12 12.9 16 16.1 19 19.3	—————————————————————————————————————	Раз-меры 3.8 4.3 5.4 6.5 10.9 13	ежущей (мм) Код	2-2-3-3-4 Ko 6.9 4 8.2 5 5 6.9 4 8.2 5 5 6 6.9 4 8.2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Pas Mep 4.8 6.5 5.8 6.5 5.8 6.6 9.7 7.8 6.9 9.7	Код	Раз- меры 11.2 16.6 22.1	Код 16	меры 19.7 	CaHONI PROPERTY OF THE PROPERT
T	С отверстием или без отверстия Нет	Форма отверстия — Цилиндрическое отверстие односторонним углом цилиндрическое отверстие сдвухсторонним углом 40°-60° Частично цилиндрическое отверстие односторонним углом илиндрическое отверстие одвухсторонним углом	Струж- колома- колома- кодиря канавка Нет Односто- ронний Двухсто- ронний Двухсто- ронний Нет	Форма Форма В З З З З З З З З З З З З З З З З З З	(Kop 7	Размеры 5 6 8 9.525 10 12 12.7 15.875 16 19.05	Код 03 04 05 06 07 09 12 15 19 	Раз- меры 3.97 4.76 5.56 6.35 7.94 9.525 12.7 15.875 19.05 	© KOA Pas-Mepы 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 12 12.9 16 16.1 19 19.3 22 22.6	03 04 05 08 10 13	Раз- меры 3.8 4.3 5.4 6.5 8.7 10.9 13	ежущей (мм) Код	2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	Pas Mep 4.8 5.8 6.6.8 7.7.8 9.9.7 1.11.6 3.23.3 23.3 7.27	Код	Размеры 11.2 22.1		меры 19.7 	Cahookp Cahook
	С отверстием или без отверстия Нет	Форма отверстия — Цилиндрическое отверстие с односторонним углом 40°-60° Частично цилиндрическое отверстие с односторонии углом 40°-60° Частично цилиндрическое отверстие с односторонним углом 40°-60° Частично цилиндрическое отверстие с односторонним углом 40°-60° Тастично цилиндрическое отверстие с односторонним углом 40°-60° Тастично цилиндрическое односторонним 40°-60° Тастично цилиндрическое односторонним углом 40°-60° Тастично цилиндрическое односторонним 40°-60° Тастично цилиндрическое односторонним 40°-60° Тастично цилиндрическое односторонним 40°-60° Тастично цилинд	Струж- колома- колома- ющая канавка Нет Односто- ронний Двуксто- ронний Двуксто- ронний Нет Односто- ронний Нет Двуксто- ронний Нет	Форма Форма	(Kop 7	В 8 9.525 10 12 12.7 15.875 16 19.05 20 25	Код 03 04 05 06 07 12 15 19 22	Раз- меры 3.97 4.76 	© KOA Pas- Mepbil 03 4.0 04 4.8 05 5.6 06 6.5 08 8.1 09 9.7 12 12.9 16 16.1 19 19.3 22 22.6	03 04 05 08 10 13	Раз- меры 3.8 4.3 5.4 6.5 8.7 10.9 13	жущей (мм) Код	Pas- lephi Ko 6.9 4 8.2 5 9.6 6 11 7 13.8 9 16.5 1 22 1 27.5 1 33 2 38.5 2	Pas Mep 4.8 5.8 6.6.8 7.7.8 9.9.7 1.11.6 5.5.5 9.19.6 3.23.3 7.27 1.31	— — — — — — — — — — — — — — — — — — —	Размеры 11.2 22.1		меры 19.7 	сан окр ноо (м 3. 4. 5. 6. 7. 11 12 15. 19 22 22 25
	С отверстием или без отверстия Нет	Форма отверстия Форма отверстия Частично цилиндрическое отверстие с односторонним углом 40°-60° Частично цилиндрическое отверсти с двухсторонним углом 40°-60° Частично цилиндрическое отверстие с односторонним углом 40°-60°	Струж- колома- колома- ющая канавка Нет Односто- ронний Двухсто- ронний Двухсто- ронний Двухсто- ронний Двухсто- ронний Нет Односто- ронний Нет Двухсто- ронний Нет Односто-	Форма Форма В З З З З З З З З З З З З З З З З З З	(Kop 7	В 8 9.525 10 12 12.7 15.875 16 19.05 20 25 25.4	Код 03 04 05 06 07 09 12 15 19 22 25	Раз- меры 3.97 4.76 6.35 7.94 12.7 15.875 19.05 19.05 22.225 	© K C C	03 04 05 08 10 13	Раз- меры 3.8 4.3 5.4 6.5 8.7 10.9 13	жущей (мм) Код	Pas- leepsi Ko 6.9 4 8.2 5 11 7 13.8 5 16.5 1 22 1 27.5 1 33 2 38.5 2 444 3	Pas Mep 4.88 5.86 6.68 6.77 7.89 9.77 11.11.61 5.515.5 9.19.61 3.23.3 7.27 1.31 8.38.88	— — — — — — — — — — — — — — — — — — —	Размеры 11.2 22.1		меры 19.7 	Вгсан окрупно (м 3. 4. 5. 6. 7. 11 12 15. 11 19 22 22. 22 31 3


Правила обозначения моделей токарных пластин из PCBN/PCD

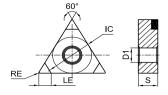
Токарные пластины РСВN (негативные) — сварные

		Ко- личе-		Р	азмер (мм)	Ы		покр	іав с рыти- PCBN		По	крыт	ие PC	BN	
Код	ц заказа	ство кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	CNGA120404LS-2	2	2.2	12.7	4.76	5.16	0.4	0	•		•			•	•
	CNGA120408LS-2	2	2.2	12.7	4.76	5.16	0.8		•		0			•	
	CNGA120404M-2	2	2.2	12.7	4.76	5.16	0.4		•	0	0	•	•		•
	CNGA120408M-2	2	2.2	12.7	4.76	5.16	0.8	0	0	0		•	•	•	•
	CNGA120412M-2	2	2.2	12.7	4.76	5.16	1.2					•	•		•
	CNGA120408H-2	2	2.2	12.7	4.76	5.16	0.8					•		•	•
	CNGA120404LS-4	4	2.2	12.7	4.76	5.16	0.4							•	
	CNGA120408LS-4	4	2.2	12.7	4.76	5.16	0.8							•	
	CNGA120404M-4	4	2.2	12.7	4.76	5.16	0.4								•
	CNGA120408M-4	4	2.2	12.7	4.76	5.16	0.8								•
	CNGA120412M-4	4	2.2	12.7	4.76	5.16	1.2								•
	CNGA120408H-4	4	2.2	12.7	4.76	5.16	0.8								•
	CNGG120404L-2BHF	2	2.5	12.7	4.76	5.16	0.4							•	•
	CNGG120408L-2BHF	2	2.5	12.7	4.76	5.16	0.8							•	•
	CNGG120412L-2BHF	2	2.5	12.7	4.76	5.16	1.2							0	0
	CNGG120404L-4BHF	4	2.5	12.7	4.76	5.16	0.4							0	0
	CNGG120408L-4BHF	4	2.5	12.7	4.76	5.16	0.8							0	0
	CNGG120412L-4BHF	4	2.5	12.7	4.76	5.16	1.2							0	0
	CNGG120404M-2BHM	2	2.5	12.7	4.76	5.16	0.4							•	•
	CNGG120408M-2BHM	2	2.5	12.7	4.76	5.16	0.8							•	•
	CNGG120412M-2BHM	2	2.5	12.7	4.76	5.16	1.2							0	0
	CNGG120404M-4BHM	4	2.5	12.7	4.76	5.16	0.4							0	0
	CNGG120408M-4BHM	4	2.5	12.7	4.76	5.16	0.8							0	0
	CNGG120412M-4BHM	4	2.5	12.7	4.76	5.16	1.2							0	0


lacktriangle В наличии \bigcirc Доступно по запросу

ш Токарные пластин из PCBN/PCD

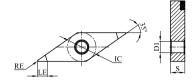
Токарные пластины PCBN (негативные) — сварные


 $\mathsf{DN} \square \square$

Ромб 55° с отверстием

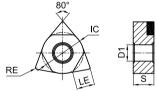
		Коли-		Р	азмер (мм)	Ы					По	крыт	ие РС	BN	
Код	заказа	кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	BHC225P
	DNGA150404LS-2	2	2.2	12.7	4.76	5.16	0.4	•			•			0	
	DNGA150408LS-2	2	2.2	12.7	4.76	5.16	0.8							•	
	DNGA150404M-2	2	2.2	12.7	4.76	5.16	0.4					•	0	•	•
	DNGA150408M-2	2	2.2	12.7	4.76	5.16	0.8	•	•	•		•	•		•
	DNGA150412M-2	2	2.2	12.7	4.76	5.16	1.2		0			0	•		•
	DNGA150608M-2	2	2.2	12.7	6.35	5.16	0.8						0		0
	DNGA150612M-2	2	2.2	12.7	6.35	5.16	1.2	0				0			0
	DNGA150404LS-4	4	2.2	12.7	4.76	5.16	0.4							•	
	DNGA150408LS-4	4	2.2	12.7	4.76	5.16	0.8							•	
	DNGA150404M-4	4	2.2	12.7	4.76	5.16	0.4								•
	DNGA150408M-4	4	2.2	12.7	4.76	5.16	0.8								•
	DNGA150412M-4	4	2.2	12.7	4.76	5.16	1.2								•
	DNGA150604M-4	4	2.2	12.7	6.35	5.16	0.4								•
	DNGA150608M-4	4	2.2	12.7	6.35	5.16	0.8								•
	DNGA150612M-4	4	2.2	12.7	6.35	5.16	1.2								•
	DNGG150404L-2BHF	2	2.5	12.7	4.76	5.16	0.4							•	•
	DNGG150408L-2BHF	2	2.5	12.7	4.76	5.16	0.8							•	•
	DNGG150412L-2BHF	2	2.5	12.7	4.76	5.16	1.2							0	0
	DNGG150404L-4BHF	4	2.5	12.7	4.76	5.16	0.4							0	0
	DNGG150408L-4BHF	4	2.5	12.7	4.76	5.16	8.0							0	0
	DNGG150412L-4BHF	4	2.5	12.7	4.76	5.16	1.2							0	0
	DNGG150404M-2BHM	2	2.5	12.7	4.76	5.16	0.4							•	•
	DNGG150408M-2BHM	2	2.5	12.7	4.76	5.16	0.8							•	•
	DNGG150412M-2BHM	2	2.5	12.7	4.76	5.16	1.2							0	0
	DNGG150404M-4BHM	4	2.5	12.7	4.76	5.16	0.4							0	0
	DNGG150408M-4BHM	4	2.5	12.7	4.76	5.16	0.8							0	0
	DNGG150412M-4BHM	4	2.5	12.7	4.76	5.16	1.2							0	0

Токарные пластины РСВ (негативные) — сварные



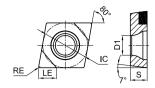
		Ко-		P	азмер (мм)	Ы		кры	з с по- гием BN		По	окрыт	ие РСЕ	BN	
Кс	од заказа	ство кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	BHC225P
	TNGA160404LS-3	3	2.2	9.525	4.76	3.81	0.4							•	
	TNGA160408LS-3	3	2.2	9.525	4.76	3.81	0.8				•			•	
	TNGA160404M-3	3	2.2	9.525	4.76	3.81	0.4	•		•	•	•	•	•	•
	TNGA160408M-3	3	2.2	9.525	4.76	3.81	8.0	0			•	•	•	•	•
	TNGA160412M-3	3	2.2	9.525	4.76	3.81	1.2					0	0		0
	TNGA160404H-3	3	2.2	9.525	4.76	3.81	0.8								•
	TNGA160408H-3	3	2.2	9.525	4.76	3.81	0.8					0	0		•
	TNGA160404LS-6	6	2.2	9.525	4.76	3.81	0.4							•	
	TNGA160408LS-6	6	2.2	9.525	4.76	3.81	0.8							•	
	TNGA160404M-6	6	2.2	9.525	4.76	3.81	0.4								•
	TNGA160408M-6	6	2.2	9.525	4.76	3.81	8.0								•
	TNGA160412M-6	6	2.2	9.525	4.76	3.81	1.2								•
	TNGA160408H-6	6	2.2	9.525	4.76	3.81	8.0								•
	TNGG160404L-3BHF	3	2.5	9.525	4.76	3.81	0.4							•	•
	TNGG160408L-3BHF	3	2.5	9.525	4.76	3.81	0.8							•	•
	TNGG160412L-3BHF	3	2.5	9.525	4.76	3.81	1.2							0	0
	TNGG160404L-6BHF	6	2.5	9.525	4.76	3.81	0.4							0	0
	TNGG160408L-6BHF	6	2.5	9.525	4.76	3.81	0.8							0	0
	TNGG160412L-6BHF	6	2.5	9.525	4.76	3.81	1.2							0	0
	TNGG160404M-3BHM	3	2.5	9.525	4.76	3.81	0.4							•	•
	TNGG160408M-3BHM	3	2.5	9.525	4.76	3.81	0.8							•	•
	TNGG160412M-3BHM	3	2.5	9.525	4.76	3.81	1.2							0	0
	TNGG160404M-6BHM	6	2.5	9.525	4.76	3.81	0.4							0	0
	TNGG160408M-6BHM	6	2.5	9.525	4.76	3.81	0.8							0	0
	TNGG160412M-6BHM	6	2.5	9.525	4.76	3.81	1.2							0	0

Токарные пластины PCBN (негативные) — сварные


\/****|

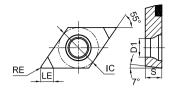
Ромб 35° с отверстием

		Ко-		F	Размер (мм)	ЭЫ		Сплав кры ⁻ РС			По	окрыт	ие РСВ	SN	
Код з	аказа	ство кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	BHC225P
	VNGA160404LS-2	2	2.2	9.525	4.76	3.81	0.4				•			•	
	VNGA160408LS-2	2	2.2	9.525	4.76	3.81	0.8				0			•	
	VNGA160404M-2	2	2.2	9.525	4.76	3.81	0.4				•	•	•	•	•
	VNGA160408M-2	2	2.2	9.525	4.76	3.81	0.8					•	•	0	•
	VNGA160412M-2	2	2.2	9.525	4.76	3.81	1.2				•				•
	VNGA160404LS-4	4	2.2	9.525	4.76	3.81	0.4							•	
	VNGA160408LS-4	4	2.2	9.525	4.76	3.81	0.8							•	
	VNGA160404M-4	4	2.2	9.525	4.76	3.81	0.4								•
	VNGA160408M-4	4	2.2	9.525	4.76	3.81	0.8								•
	VNGA160412M-4	4	2.2	9.525	4.76	3.81	1.2								•
	VNGG160404L-2BHF	2	2.5	9.525	4.76	3.81	0.4							•	•
	VNGG160408L-2BHF	2	2.5	9.525	4.76	3.81	0.8							•	•



		Коли-		Р	азмер (мм)	Ы		Сплав крыт РС	гием		По	окрыт	ие РСЕ	BN	
Код з	ваказа	чество кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	WNGA080404LS-3	3	2.2	12.7	4.76	5.16	0.4				0			•	
	WNGA080408LS-3	3	2.2	12.7	4.76	5.16	0.8				•			•	
	WNGA080404M-3	3	2.2	12.7	4.76	5.16	0.4					•	•		•
	WNGA080408M-3	3	2.2	12.7	4.76	5.16	0.8	•	0	0		•	•		•
	WNGA080412M-3	3	2.2	12.7	4.76	5.16	1.2		0				•		0
	WNGA080408H-3	3	2.2	12.7	4.76	5.16	0.8		•			•			•
	WNGA080404LS-6	6	2.2	12.7	4.76	5.16	0.4							•	
	WNGA080408LS-6	6	2.2	12.7	4.76	5.16	0.8							•	
	WNGA080404M-6	6	2.2	12.7	4.76	5.16	0.4								•
	WNGA080408M-6	6	2.2	12.7	4.76	5.16	0.8								•
	WNGA080412M-6	6	2.2	12.7	4.76	5.16	1.2								

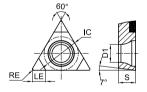
Токарные пластины РСВN (позитивные) — сварные



		Ко-		Pa	ізмерь (мм)	Ы		Сплав крыт РС			П	окрыт	ие РСЕ	BN	
Код :	заказа	ство кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	BHC225P
	CCGW060202L-2	2	2	6.35	2.38	2.8	0.2					0		•	•
	CCGW060204L-2	2	2	6.35	2.38	2.8	0.4			0	•	•		•	•
	CCGW060208L-2	2	2	6.35	2.38	2.8	0.8		0			0		0	
	CCGW060204M-2	2	2	6.35	2.38	2.8	0.4					•		•	•
	CCGW060208M-2	2	2	6.35	2.38	2.8	0.8				•			•	•
	CCGW09T304L-2	2	2	9.525	3.97	4.4	0.4	•			•			•	•
	CCGW09T308L-2	2	2	9.525	3.97	4.4	0.8				0	0		0	
	CCGW09T304M-2	2	2	9.525	3.97	4.4	0.4	•	0	0		•	•	•	•
	CCGW09T308M-2	2	2	9.525	3.97	4.4	0.8	•	0	0	•	•	•		•
	CCGW09T304H-2	2	2	9.525	3.97	4.4	0.4								•
	CCGW09T308H-2	2	2	9.525	3.97	4.4	0.8					•	0		•
	CCGT060204L-2BHF	2	2.5	6.35	2.38	2.8	0.4							0	0
	CCGT09T304L-2BHF	2	2.5	9.525	3.97	4.4	0.4							•	•
	CCGT09T308L-2BHF	2	2.5	9.525	3.97	4.4	0.8							•	•

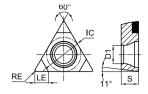
ш Токарные пластины из PCBN/PCD

Токарные пластины РСВN (позитивные) — сварные



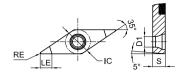
		Коли-		Pa	азмері (мм)	bl		кры	в с по- тием :BN		По	окрыті	ие РСЕ	BN	
Код з	заказа	чество кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	DCGW070202L-2	2	2	6.35	2.38	2.8	0.2					•		•	•
	DCGW070204L-2	2	2	6.35	2.38	2.8	0.4		0		0	•		•	•
	DCGW070204M-2	2	2	6.35	2.38	2.8	0.4					0			0
	DCGW070208M-2	2	2	6.35	2.38	2.8	0.8					0			•
	DCGW11T304L-2	2	2	9.525	3.97	4.4	0.4	0		0				•	
	DCGW11T308L-2	2	2	9.525	3.97	4.4	0.8	0			0			•	
	DCGW11T302M-2	2	2	9.525	3.97	4.4	0.4							•	
	DCGW11T304M-2	2	2	9.525	3.97	4.4	0.4	•	•	•	•	•	•	•	•
	DCGW11T308M-2	2	2	9.525	3.97	4.4	0.8	•		•	•	•	•	•	•
	DCGT070204L-2BHF	2	2.5	6.35	2.38	2.8	0.4							0	0
	DCGT11T304L-2BHF	2	2.5	9.525	3.97	4.4	0.4							•	•
	DCGT11T308L-2BHF	2	2.5	9.525	3.97	4.4	0.8							•	•

● В наличии ○ Доступно по запросу


		Ко-		Р	азмері (мм)	Ы		кры	в с по- гием BN		По	окрыт	ие РСЕ	BN	
Код за	Код заказа		LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	TCGW110304L-3	3	2	6.35	3.18	3.4	0.4	0						0	
	TCGW110304M-3	3	2	6.35	3.18	3.4	0.4					•			0
	TCGW110308M-3	3	2	6.35	3.18	3.4	0.8						0		0

Токарные пластины РСВN (позитивные) — сварные

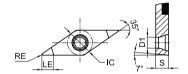
Треугольник 60° с отверстием


		Коли-		ı	Размеј (мм)			кры	з с по- гием BN		П	окрыт	ие РСЕ	BN	
Код з	заказа	чество кро- мок	LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	TPGW080202L-1	1	2	4.76	2.38	2.34	0.2		•	,	0			0	
	TPGW080204L-1	1	2	4.76	2.38	2.34	0.4				•			•	
	TPGW080208L-1	1	2	4.76	2.38	2.34	0.8				0			0	
	TPGW090202L-3	3	2	5.56	2.38	2.5	0.2				0	0		0	
	TPGW090204L-3	3	2	5.56	2.38	2.5	0.4	•	0		0	•		•	
	TPGW090208L-3	3	2	5.56	2.38	2.5	0.8	0						0	
	TPGW110204L-3	3	2	6.35	2.38	2.8	0.4		•		0			0	
	TPGW110208M-3	3	2	6.35	2.38	2.8	0.8								0
	TPGW110302L-3	3	2	6.35	3.18	3.4	0.2							0	
	TPGW110304L-3	3	2	6.35	3.18	3.4	0.4	•	•	\circ	•	•		•	•
	TPGW110308L-3	3	2	6.35	3.18	3.4	0.8				•	•		•	•
	TPGW110304M-3	3	2	6.35	3.18	3.4	0.4					0	0		0
	TPGW110308M-3	3	2	6.35	3.18	3.4	0.8					0			0
	TPGT110304L-3BHF	3	2.5	6.35	3.18	2.8	0.4							•	•
	TPGT110308L-3BHF	3	2.5	6.35	3.18	2.8	0.8							•	•

ш Токарные пластины из PCBN/PCD

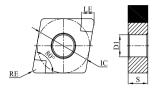
Токарные пластины РСВN (позитивные) — сварные

_



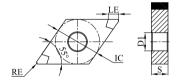
	Коли-		F	азмер (мм)	Ы		кры	з с по- гием BN		По	окрыт	ие РСЕ	BN		
Код за	Код заказа VPCW1102021-2		LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	VBGW110302L-2	2	2	6.35	3.18	2.8	0.2			0		0	0	0	
	VBGW110304L-2	2	2	6.35	3.18	2.8	0.4			•	0	•		0	
	VBGW110308L-2	2	2	6.35	3.18	2.8	0.8					0	0	0	
7	VBGW110304M-2	2	2	6.35	3.18	2.8	0.4					0			•
	VBGW110308M-2	2	2	6.35	3.18	2.8	0.8					0			0
	VBGW110308M-2 VBGW160404L-2	2	2	9.525	4.76	4.4	0.4	0				0		•	
VBGW160408L-2 VBGW160404M-2	2	2	9.525	4.76	4.4	0.8	0				0		0		
	2	2	9.525	4.76	4.4	0.4				0	•	0		•	
	VBGW160408M-2	2	2	9.525	4.76	4.4	0.8				•	0	•	•	•

● В наличии ○ Доступно по запросу



		Коли-		F	Размер (мм)	Ы		кры	в с по- гием BN		По	крыт	ие РСЕ	BN	
Код зан	Код заказа		LE	IC	S	D1	RE	BKN115P	BSN115P	BKC120P	BHC115P	BHC125P	BHC135P	BHC210P	ВНС225Р
	VCGW110302L-2	2	2	6.35	3.18	2.8	0.2			0				0	
VCGW110304L-2	2	2	6.35	3.18	2.8	0.4	•			0			•		
	VCGW110308L-2	2	2	6.35	3.18	2.8	0.8				0			0	
	VCGW110308M-2	2	2	6.35	3.18	2.8	0.8	0							0
	VCGW160404L-2	2	2	9.525	4.76	4.4	0.4					\circ		0	0
VCGW160408L-2 VCGW160402M-2	2	2	9.525	4.76	4.4	0.8					0		0		
	VCGW160402M-2	2	2	9.525	4.76	4.4	0.4							•	
	VCGW160404M-2	2	2	9.525	4.76	4.4	0.4	•						•	
	VCGW160408M-2	2	2	9.525	4.76	4.4	0.8					•			•

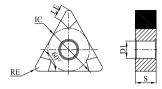
Токарные пластины PCBN (негативные) — столбчатые



	Код заказа				Размерь (мм)	I		Сплав с покрытием PCBN	Покрытие РСВМ	
Кодз			LE	IC	S	D1	RE	BKN225Z	BHC215Z	BHC225Z
	CNGA120404LS-4	4	2.2	12.7	4.76	5.16	0.4	0	•	
	CNGA120408LS-4	4	2.2	12.7	4.76	5.16	0.8	0	•	
	CNGA120412LS-4	4	2.2	12.7	4.76	5.16	1.2	0	0	
	CNGA120404M-4	4	2.2	12.7	4.76	5.16	0.4	0	0	0
	CNGA120408M-4	4	2.2	12.7	4.76	5.16	0.8	•	•	•
	CNGA120412M-4	4	2.2	12.7	4.76	5.16	1.2	0	0	•
	CNGA120412H-4	4	2.2	12.7	4.76	5.16	1.2	•		•

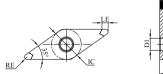
● В наличии ○ Доступно по запросу

	Vortabyasa	Коли-		1	Размерь (мм)	I		Сплав с покрытием PCBN	Покрытие PCBN	
Код з	Код заказа		LE	IC	S	D1	RE	BKN225Z	BHC215Z	BHC225Z
	DNGA150404LS-4	4	2.2	12.7	4.76	5.16	0.4	0	\circ	
	DNGA150408LS-4	4	2.2	12.7	4.76	5.16	0.8	0	0	
	DNGA150404M-4	4	2.2	12.7	4.76	5.16	0.4	0	0	0
	DNGA150408M-4	4	2.2	12.7	4.76	5.16	0.8	•	•	•
	DNGA150412M-4	4	2.2	12.7	4.76	5.16	1.2	0	0	0
	DNGA150412H-4	4	2.2	12.7	4.76	5.16	1.2	0	0	•


ш Токарные пластины из PCBN/PCD

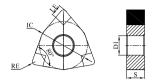
Токарные пластины PCBN (негативные) — столбчатые

TN


Треугольник 60° с отверстием

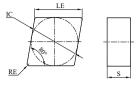
	Код заказа			I	Размерь (мм)	I		Сплав с покрытием PCBN	Покрыт	ие PCBN
Код			Коли- чество кромок LE	IC	S	D1	RE	BKN225Z	BHC215Z	BHC225Z
	TNGA160404LS-6		2.2	9.525	4.76	3.81	0.4	0	•	
	TNGA160408LS-6	6	2.2	9.525	4.76	3.81	0.8	0	0	
	TNGA160404M-6	6	2.2	9.525	4.76	3.81	0.4	0	0	•
	TNGA160408M-6	6	2.2	9.525	4.76	3.81	0.8	•	•	•
	TNGA160412M-6	6	2.2	9.525	4.76	3.81	1.2	0	0	•

● В наличии ○ Доступно по запросу



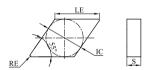
	Код заказа				Размеры (мм)	I		Сплав с покрытием PCBN	и Покрытие РСЕ	
Кодз			Количество кромок LE	IC	S	D1	RE	BKN225Z	BHC215Z	BHC225Z
	VNGA160404LS-4		2.2	9.525	.525 4.76 3.81 0.4		0.4	0	•	
	VNGA160408LS-4	4	2.2	9.525	4.76	3.81	0.8	0	0	
	VNGA160404M-4	4	2.2	9.525	4.76	3.81	0.4	0	0	0
	VNGA160408M-4	4	2.2	9.525	4.76	3.81	0.8	•	•	•
	VNGA160412M-4	4	2.2	9.525	4.76	3.81	1.2	0	0	0

Токарные пластины PCBN (негативные) — столбчатые



	Код заказа			l	Размерь (мм)	I		Сплав с покрытием РСВN	Покрыт	ие PCBN
Код			LE	IC	S	D1	RE	BKN225Z	BHC215Z	BHC225Z
	WNGA080404LS-6	6	2.2	12.7	4.76	5.16	0.4	0	•	
	WNGA080408LS-6	6	2.2	12.7	4.76	5.16	0.8	0	0	0
	WNGA080404M-6	6	2.2	12.7	4.76	5.16	0.4	•	0	0
	WNGA080408M-6	6	2.2	12.7	4.76	5.16	0.8	•	•	•
	WNGA080412M-6	6	2.2	12.7	4.76	5.16	1.2	•	0	•
	WNGA080412H-6	6	2.2	12.7	4.76	5.16	1.2	•	0	•

ш Токарные пластины из PCBN/PCD


Токарные пластины PCBN (негативные) — целые

		Vo.su.			меры ім)		Сплав с покрытием PCBN		
Код :	заказа	Коли- чество кромок	LE	IC	S	RE	BKN225S	BHN225S	
	CNGN120404M-4	4	12.7	12.7	4.76	0.4	0	0	
	CNGN120408LS-4	4	12.7	12.7	4.76	0.4	0	•	
	CNGN120408M-4	4	12.7	12.7	4.76	0.8	0	0	
	CNGN120412M-4	4	12.7	12.7	4.76	1.2	0	0	
	CNGN120704M-4	4	12.7	12.7	7.94	0.4	0	0	
	CNGN120708M-4	4	12.7	12.7	7.94	0.8	0		
_	CNGN120712M-4	4	12.7	12.7	7.94	1.2	•	•	
	CNGN120716M-4	4	12.7	12.7	7.94	1.6	0	0	

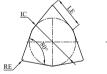
● В наличии ○ Доступно по запросу

		l/a = u			иеры ім)		Сплав с покр	ытием PCBN
Код :	заказа	Коли- чество кромок	LE	IC	S	RE	BKN225S	BHN225S
	DNGN110308M-4	4	9.525	9.525	3.18	0.8	0	0
	DNGN110312M-4	4	9.525	9.525	3.18	1.2	0	0

Токарные пластины PCBN (негативные) — целые

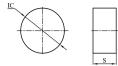
SN

Четырехугольник 90° без отверстия



					иеры м)		Сплав с покрытием РСВ		
Код	заказа	Коли- чество кромок	LE	IC	S	RE	BKN225S	BHN225S	
	SNGN090404M-8	8	9.525	9.525	4.76	0.4	0	0	
	SNGN090408M-8	8	9.525	9.525	4.76	0.8	0	0	
	SNGN090412M-8	8	9.525	9.525	4.76	1.2	0	0	
	SNGN120404M-8	8	12.7	12.7	4.76	0.4	0	0	
	SNGN120408M-8	8	12.7	12.7	4.76	0.8	0	0	
_	SNGN120412M-8	8	12.7	12.7	4.76	1.2	•	0	
	SNGN120708M-8	8	12.7	12.7	7.94	0.8	0	0	
	SNGN120712M-8	8	12.7	12.7	7.94	1.2	0	0	
	SNGN120716M-8	8	12.7	12.7	7.94	1.6	•	0	
	SNGN150708M-8	8	15.875	15.875	7.94	0.8	0	0	
	SNGN150712M-8	8	15.875	15.875	7.94	1.2	0	0	

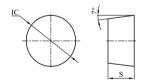
● В наличии ○ Доступно по запросу


					иеры м)		Сплав с покрытием PCBN		
Код :	заказа	Коли- чество кромок	LE	IC	S	RE	BKN225S	BHN225S	
	WNGN080404M-6	6	8.72	12.7	4.76	0.4	0	0	
	WNGN080408M-6	6	8.72	12.7	4.76	0.8	0	0	
	WNGN080412M-6	6	8.72	12.7	4.76	1.2	0	0	
	WNGN080416M-6	6	8.72	12.7	4.76	1.6	0	0	
	WNGN080604M-6	6	8.72	12.7	6.35	0.4	0	0	
	WNGN080608M-6	6	8.72	12.7	6.35	0.8	0	0	
	WNGN080612M-6	6	8.72	12.7	6.35	1.2	0	0	
	WNGN080616M-6	6	8.72	12.7	6.35	1.6	0	0	

ш Токарные пластины из PCBN/PCD

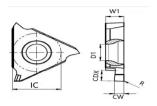
Токарные пластины РСВN (позитивные) — целые

_



				Разм (м	иеры м)	Сплав с покрытием PCBN		
Код	заказа	Коли- чество кромок	LE	IC	S	RE	BKN225S	BHN225S
	RNGN060300M	-	-	6	3.18	-	0	•
	RNGN090300M	-	-	9.525	3.18	-	0	•
	RNGN120400M	-	-	12.7	4.76	-	•	•
	RNGN120400H	-	-	12.7	4.76	-	•	0
	RNGN120700M	-	-	12.7	7.94	-	0	0
	RNGN150700M	-	-	15.875	7.94	-	0	0
	RNGN201000M	-	-	20	10	-	0	0

● В наличии ○ Доступно по запросу

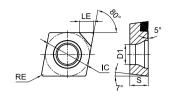

	Код заказа				иеры ім)	Сплав с покрытием PCBN		
Код :			LE	IC	S	RE	BKN225S	BHN225S
	RCGN120700M	-	-	12.7	7.94	-		0
	RCGN160700M		-	16	7.94	-		0

lacktriangle В наличии \bigcirc Доступно по запросу

Токарные пластины PCBN для отрезки

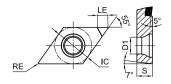
GR

Токарные пластины для прецизионной обработки


					иеры м)			Сплав с покрытием PCBN
Код за	каза	CW	CDX	RE	IC	W1	D1	BHN125P
	GB4125R-020	1.25	2.5	0.2	12.7	4.76	5.5	•
	GB4125L-020	1.25	2.5	0.2	12.7	4.76	5.5	•
	GB4150R-020	1.5	3.5	0.2	12.7	4.76	5.5	•
	GB4150L-020	1.5	3.5	0.2	12.7	4.76	5.5	•
	GB4200R-020	2	3.5	0.2	12.7	4.76	5.5	•
	GB4200L-020	2	3.5	0.2	12.7	4.76	5.5	•
	GB4250R-020	2.5	4	0.2	12.7	4.76	5.5	•
	GB4250L-020	2.5	4	0.2	12.7	4.76	5.5	•
	GB4300R-020	3	4	0.2	12.7	4.76	5.5	•
	GB4300L-020	3	4	0.2	12.7	4.76	5.5	•
	GB4350R-020	3.5	5	0.2	12.7	4.76	5.5	•
	GB4350L-020	3.5	5	0.2	12.7	4.76	5.5	•
	GB4400R-020	4	5	0.2	12.7	4.76	5.5	•
	GB4400L-020	4	5	0.2	12.7	4.76	5.5	•

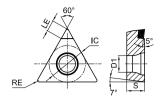
ш Токарные пластины из PCBN/PCD

Токарные пластины из РСD (позитивные)



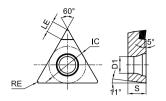
		Коли-			Размеры (мм)			Сплав с покрытием PCD
Код	заказа	чество	LE	IC	S	D1	RE	DNN125P
	CCGW060202GB-1	1	2.5	6.35	2.38	2.8	0.2	•
	CCGW060204GB-1	1	2.5	6.35	2.38	2.8	0.4	0
	CCGW09T302GB-1	1	3	9.525	3.97	4.4	0.2	•
	CCGW09T304GB-1	1	3	9.525	3.97	4.4	0.4	0
	CCGW09T308GB-1	1	3	9.525	3.97	4.4	0.8	0
	CCGW120404GB-1	1	3	12.7	4.76	5.5	0.4	•
	CCGW120408GB-1	1	3	12.7	4.76	5.5	0.8	0
	CCGW060202KB-1	1	2.5	6.35	2.38	2.8	0.2	•
	CCGW060204KB-1	1	2.5	6.35	2.38	2.8	0.4	0
	CCGW09T302KB-1	1	3	9.525	3.97	4.4	0.2	0
	CCGW09T304KB-1	1	3	9.525	3.97	4.4	0.4	•
	CCGW09T308KB-1	1	3	9.525	3.97	4.4	0.8	0
	CCGT060202K-1DNF	1	3	6.35	2.38	2.8	0.2	0
	CCGT060204K-1DNF	1	3	6.35	2.38	2.8	0.4	0
	CCGT09T302K-1DNF	1	3.5	9.525	3.97	4.4	0.2	•
	CCGT09T304K-1DNF	1	3.5	9.525	3.97	4.4	0.4	•
	CCGT09T308K-1DNF	1	3.5	9.525	3.97	4.4	0.8	•
	CCGT060204K-1DNM	1	3	6.35	2.38	2.8	0.4	0
	CCGT09T304K-1DNM	1	3.5	9.525	3.97	4.4	0.4	•
	CCGT09T308K-1DNM	1	3.5	9.525	3.97	4.4	0.8	•

Токарные пластины из PCD (позитивные)


		Коли-			Размеры (мм)			Сплав с покрытием PCD
Код з	аказа	чество кромок	LE	IC	S	D1	RE	DNN125P
	DCGW070202GB-1	1	2.5	6.35	2.38	2.8	0.2	0
	DCGW070204GB-1	1	2.5	6.35	2.38	2.8	0.4	•
	DCGW11T302GB-1	1	3	9.525	3.97	4.4	0.2	0
	DCGW11T304GB-1	1	3	9.525	3.97	4.4	0.4	0
	DCGW11T308GB-1	1		9.525	3.97	4.4	0.8	•
	DCGW070202KB-1	1	2.5	6.35	2.38	2.8	0.2	0
	DCGW070204KB-1	1	2.5	6.35	2.38	2.8	0.4	•
	DCGW11T302KB-1	1	3	9.525	3.97	4.4	0.2	0
	DCGW11T304KB-1	1	3	9.525	3.97	4.4	0.4	•
	DCGW11T308KB-1	1	3	9.525	3.97	4.4	0.8	0
	DCGT070202K-1DNF	1	3	6.35	2.38	2.8	0.2	0
	DCGT070204K-1DNF	1	3	6.35	2.38	2.8	0.4	0
	DCGT11T302K-1DNF	1	3.5	9.525	3.97	4.4	0.2	•
	DCGT11T304K-1DNF	1	3.5	9.525	3.97	4.4	0.4	•
	DCGT11T308K-1DNF	1	3.5	9.525	3.97	4.4	0.8	•
	DCGT070204K-1DNM	1	3	6.35	2.38	2.8	0.4	0
	DCGT11T304K-1DNM	1	3.5	9.525	3.97	4.4	0.4	•
	DCGT11T308K-1DNM	1	3.5	9.525	3.97	4.4	0.8	•

ш Токарные пластины из PCBN/PCD

Токарные пластины из PCD (позитивные)

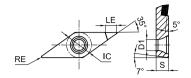


		Коли-			Размеры (мм)			Сплав с покрытием PCD
Код за	каза	чество кромок	LE	IC	S	D1	RE	DNN125P
	TCGW080202GB-1	1	2.5	4.76	2.38	2.34	0.2	0
	TCGW080204GB-1	1	2.5	4.76	2.38	2.34	0.4	•
	TCGW090202GB-1	1	2.5	5.56	2.38	2.5	0.2	0
	TCGW090204GB-1	1	2.5	5.56	2.38	2.5	0.4	•
	TCGW110302GB-1	1	2.5	6.35	3.18	3.4	0.2	0
	TCGW110304GB-1	1	2.5	6.35	3.18	3.4	0.4	•
	TCGW080202KB-1	1	2.5	4.76	2.38	2.34	0.2	0
	TCGW080204KB-1	1	2.5	4.76	2.38	2.34	0.4	•
	TCGW090202KB-1	1	2.5	5.56	2.38	2.5	0.2	0
	TCGW090204KB-1	1	2.5	5.56	2.38	2.5	0.4	•
	TCGW110302KB-1	1	2.5	6.35	3.18	3.4	0.2	0
	TCGW110304KB-1	1	2.5	6.35	3.18	3.4	0.4	•

Токарные пластины из PCD (позитивные)

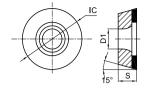
 $\mathsf{TP} \square \square$

Треугольник 60° с отверстием


TPGW0802026B-1			Коли-			Размеры (мм)			Сплав с покрытием PCD
TPGW080204GB-1 1 2.5 4.76 2.38 2.34 0.4 ◆ TPGW090202GB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202GB-1 1 2.5 5.56 2.38 2.5 0.4 ◆ TPGW110302GB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW16040GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160402GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160402GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.4 ◆ TPGW160402KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGT1608020XH.IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202XH.IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT090202XH.IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202XH.IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT110204XH.IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110204XH.IDNM 1 3 6.35 3.18 3.4 0.4 ●	К	од заказа	чество	LE	IC	S	D1	RE	DNN125P
TPGW090202GB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204GB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302GB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW160402GB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW160404GB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW10302KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW10302KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW110302KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW110304KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080204K-IDNF 1 3 5.56 2.38 2.5 0.2 ○ TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ○ TPGT110202K-IDNF 1 3 6.35 3.18 3.4 0.4 ○ TPGT110302K-IDNF 1 3 6.35 3.18 3.4 0.4 ○ TPGT110304K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ○ TPGT110304K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ○ TPGT110304K-IDNF 1 3.5 9.525 4.76 4.4 0.4 ○ TPGT110304K-IDNF 1 3.5 9.525 4.76 4.4 0.4 ○		TPGW080202GB-1	1	2.5	4.76	2.38	2.34	0.2	0
TPGW090204GB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302GB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304GB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160402GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW160404GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGT1608020K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT090202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10202K-IDNF 1 3 6.35 3.18 3.4 0.4 ○ TPGT10202K-IDNF 1 3 6.35 3.18 3.4 0.4 ○ TPGT10202K-IDNF 1 3 6.35 2.38 2.5 0.2 ● TPGT10202K-IDNF 1 3 6.35 2.38 2.5 0.2 ● TPGT10202K-IDNF 1 3 6.35 2.38 2.5 0.4 ● TPGT10202K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110204K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110204K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110204K-IDNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT110304K-IDNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT10304K-IDNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT10304K-IDNM 1 3.6 6.35 3.18 3.4 0.4 ○		TPGW080204GB-1	1	2.5	4.76	2.38	2.34	0.4	•
TPGW110302GB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304GB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160404GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW160404GB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160404KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160404KB-1 1 3 9.525 5.6 0.3 0.4 ● TPGW160404KB-1 1 3 9.525 5.6 0.3 0.4 ● TPGW160404KB-1 1 3 9.525 5.76 4.4 0.4 ○ TPGW160402K-1DNF 1 3 9.525 5.76 4.4 0.8 ○ TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 6.35 3.18 3.4 0.4 ○ TPGT11020K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT11020K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11020K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11020K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT11020K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT11030K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT11030K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT11030K-1DNM 1 3.6 3.5 3.18 3.4 0.4 ● TPGT11030K-1DNM 1 3.6 3.5 3.18 3.4 0.4 ●		TPGW090202GB-1	1	2.5	5.56	2.38	2.5	0.2	0
TPGW110304GB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW08020ZKB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW08020ZKB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW09020ZKB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW09020ZKB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW09020ZKB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW11030ZKB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW11030ZKB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW16040ZKB-1 1 3 9.525 4.76 4.4 0.4 ● TPGT08020ZK-IDNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT09020ZK-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT09020ZK-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT09020ZK-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT11020ZK-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030ZK-IDNF 1 3 6.35 3.18 3.4 0.4 ●		TPGW090204GB-1	1	2.5	5.56	2.38	2.5	0.4	•
TPGW160402GB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160408GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW103020KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGT1608020K-1DNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090202K-1DNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10204K-1DNF 1 3 6.35 2.38 2.5 0.4 ● TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT11030K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT11030K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT11030K-1DNM 1 2.5 4.76 2.38 2.5 0.4 ● TPGT11030K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW110302GB-1	1	2.5	6.35	3.18	3.4	0.2	0
TPGW160404GB-1 1 3 9.525 4.76 4.4 0.4 ○ TPGW160408GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080204KB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW10302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT080202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT080202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110202K-IDNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.8 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.8 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.8 ● TPGT110304K-IDNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.8 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.8 ● TPGT110304K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-IDNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-IDNM 1 3.6 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW110304GB-1	1	2.5	6.35	3.18	3.4	0.4	•
TPGW160408GB-1 1 3 9.525 4.76 4.4 0.8 ● TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW080202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW10302KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW160404KB-1 1 3 9.525 0.38 2.34 0.2 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT080202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10202K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNM 1 3.6 6.35 3.18 3.4 0.4 ●		TPGW160402GB-1	1	3	9.525	4.76	4.4	0.2	0
TPGW080202KB-1 1 2.5 4.76 2.38 2.34 0.2 ○ TPGW080204KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10302K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT10404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT10404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT10404K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW160404GB-1	1	3	9.525	4.76	4.4	0.4	0
TPGW080204KB-1 1 2.5 4.76 2.38 2.34 0.4 ● TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW110304KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160402KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGGW160402KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGGW160404KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGGW16040KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGGW16040KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGGW16040KB-1 1 3 5.56 2.38 2.34 0.4 ○ TPGGW16040KB-1 1 3 5.56 2.38 2.34 0.4 ○ TPGGT080204K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGGT080204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGGT110204K-1DNF 1 3 6.35 3.18 3.4 0.4 ○ TPGGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGGT10404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGGT10204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGGT10204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW160408GB-1	1	3	9.525	4.76	4.4	0.8	•
TPGW090202KB-1 1 2.5 5.56 2.38 2.5 0.2 ○ TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090204K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT110202K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110202K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-IDNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110404K-IDNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT1090204K-IDNM 1 3 5.56 2.38 2.5 0.4 ● TPGT10090204K-IDNM 1 3 5.56 2.38 2.5 0.4 ● TPGT100404K-IDNM 1 3 5.56 2.38 2.34 0.4 ○ TPGT110304K-IDNM 1 3 5.56 2.38 2.5 0.4 ● TPGT100404K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT100404K-IDNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW080202KB-1	1	2.5	4.76	2.38	2.34	0.2	0
TPGW090204KB-1 1 2.5 5.56 2.38 2.5 0.4 ● TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160402K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT110304K-1DNN 1 3.5 9.525 4.76 4.4 0.4 ● TPGT1090204K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ● TPGT1090204K-1DNM 1 3 6.35 3.18 3.4 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ○		TPGW080204KB-1	1	2.5	4.76	2.38	2.34	0.4	•
TPGW110302KB-1 1 2.5 6.35 3.18 3.4 0.2 ○ TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.4 ● TPGT10202K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT160404K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT110204K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT1000204K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW090202KB-1	1	2.5	5.56	2.38	2.5	0.2	0
TPGW110304KB-1 1 2.5 6.35 3.18 3.4 0.4 ● TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110404K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110404K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT160404K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW090204KB-1	1	2.5	5.56	2.38	2.5	0.4	•
TPGW160402KB-1 1 3 9.525 4.76 4.4 0.2 ○ TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110404K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110404K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT090204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT110204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW110302KB-1	1	2.5	6.35	3.18	3.4	0.2	0
TPGW160404KB-1 1 3 9.525 4.76 4.4 0.4 ● TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-IDNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080204K-IDNF 1 3.5.56 2.38 2.5 0.2 ● TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10204K-IDNF 1 3 6.35 2.38 2.5 0.4 ● TPGT110204K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-IDNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT090204K-IDNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT090204K-IDNM 1 3 5.56 2.38 2.5 0.4 ● TPGT100404K-IDNM 1 3.5 9.525 4.76 4.4 0.8 ● TPGT10204K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10304K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-IDNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW110304KB-1	1	2.5	6.35	3.18	3.4	0.4	•
TPGW160408KB-1 1 3 9.525 4.76 4.4 0.8 ○ TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080204K-1DNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090204K-1DNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT090204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT090204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW160402KB-1	1	3	9.525	4.76	4.4	0.2	0
TPGT080202K-1DNF 1 2.5 4.76 2.38 2.34 0.2 ○ TPGT080204K-1DNF 1 3.5.56 2.38 2.5 0.2 ● TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT10202K-1DNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT160404K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGW160404KB-1	1	3	9.525	4.76	4.4	0.4	•
TPGT080204K-IDNF 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090202K-IDNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090204K-IDNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110202K-IDNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110302K-IDNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-IDNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110308K-IDNF 1 3 6.35 3.18 3.4 0.4 ● TPGT160402K-IDNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-IDNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT090204K-IDNM 1 3.5 5.56 2.38 2.34 0.4 ● TPGT110304K-IDNM 1 <		TPGW160408KB-1	1	3	9.525	4.76	4.4	0.8	0
TPGT090202K-1DNF 1 3 5.56 2.38 2.5 0.2 ● TPGT090204K-1DNF 1 3 5.56 2.38 2.5 0.4 ● TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 ○ TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.8 ○ TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT190204K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT10304K-1DNM 1 3 6.35 2.38 2.5 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGT080202K-1DNF	1	2.5	4.76	2.38	2.34	0.2	0
TPGT10202K-1DNF 1 3 5.56 2.38 2.5 0.4 TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.4 TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.8 TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 TPGT090204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.8 TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.8 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 TPGT110404K-1DNM 1 3 6.35 3.18 3.4 0.8 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 TPGT110404K-1DNM 1 3 6.35 3.18 3.4 0.8 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 0.4 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 0.4 TPGT110404 4.4 0.4 0.4 TPGT110404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 0.4 TP		TPGT080204K-1DNF	1	2.5	4.76	2.38	2.34	0.4	0
TPGT110202K-1DNF 1 3 6.35 2.38 2.8 0.2 TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.4 TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.8 TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 TPGT110204K-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT110304K-1DNM 1 6.35 3.18 3.4 0.4 TPGT110304K-1DNM 1 6.35 3.18 3.4 0.4 TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 TPGT1104K-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT1105K-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT1105K-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT1105K-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT1105C-1DNM 1 3 6.35 3.18 3.4 0.4 TPGT1105C-1DNM 1 3 6.35 3.18 3.4 0.4		TPGT090202K-1DNF	1	3	5.56	2.38	2.5	0.2	•
TPGT110204K-1DNF 1 3 6.35 2.38 2.8 0.4 ○ TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2 ● TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.8 ○ TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT1090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110304K-1DNM 1 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.4 ●		TPGT090204K-1DNF	1	3	5.56	2.38	2.5	0.4	•
TPGT110302K-1DNF 1 3 6.35 3.18 3.4 0.2		TPGT110202K-1DNF	1	3	6.35	2.38	2.8	0.2	0
TPGT110304K-1DNF 1 3 6.35 3.18 3.4 0.4		TPGT110204K-1DNF	1	3	6.35	2.38	2.8	0.4	0
TPGT110308K-1DNF 1 3 6.35 3.18 3.4 0.8 ○ TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2 ● TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ●		TPGT110302K-1DNF	1	3	6.35	3.18	3.4	0.2	•
TPGT160402K-1DNF 1 3.5 9.525 4.76 4.4 0.2		TPGT110304K-1DNF	1	3	6.35	3.18	3.4	0.4	•
TPGT160404K-1DNF 1 3.5 9.525 4.76 4.4 0.4 ● TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT110308K-1DNF	1	3	6.35	3.18	3.4	0.8	0
TPGT160408K-1DNF 1 3.5 9.525 4.76 4.4 0.8 ● TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT160402K-1DNF	1	3.5	9.525	4.76	4.4	0.2	•
TPGT080204K-1DNM 1 2.5 4.76 2.38 2.34 0.4 ○ TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT160404K-1DNF	1	3.5	9.525	4.76	4.4	0.4	•
TPGT090204K-1DNM 1 3 5.56 2.38 2.5 0.4 ● TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT160408K-1DNF	1	3.5	9.525	4.76	4.4	0.8	•
TPGT110204K-1DNM 1 3 6.35 2.38 2.8 0.4 ○ TPGT110304K-1DNM 1 3 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT080204K-1DNM	1	2.5	4.76	2.38	2.34	0.4	0
TPGT110304K-1DNM 1 6.35 3.18 3.4 0.4 ● TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT090204K-1DNM	1	3	5.56	2.38	2.5	0.4	•
TPGT110308K-1DNM 1 3 6.35 3.18 3.4 0.8 ● TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT110204K-1DNM	1	3	6.35	2.38	2.8	0.4	0
TPGT160404K-1DNM 1 3.5 9.525 4.76 4.4 0.4 ●		TPGT110304K-1DNM	1	3	6.35	3.18	3.4	0.4	•
		TPGT110308K-1DNM	1	3	6.35	3.18	3.4	0.8	•
TPGT160408K-1DNM 1 3.5 9.525 4.76 4.4 0.8 ●		TPGT160404K-1DNM	1	3.5	9.525	4.76	4.4	0.4	•
		TPGT160408K-1DNM	1	3.5	9.525	4.76	4.4	0.8	•

ш Токарные пластины из PCBN/PCD

Токарные пластины из PCD (позитивные)



		Коли-			Размеры (мм)			Сплав с покрытием PCD
Код з	аказа	чество кромок	LE	IC	S	D1	RE	DNN125P
	VCGW110302GB-1	1	3	6.35	3.18	2.8	0.2	0
	VCGW110304GB-1	1	3	6.35	3.18	2.8	0.4	•
	VCGW160402GB-1	1	3	9.525	4.76	4.4	0.2	0
	VCGW160404GB-1	1	3	9.525	4.76	4.4	0.4	•
	VCGW160408GB-1	1	3	9.525	4.76	4.4	0.8	0
	VCGW110302KB-1	1	3	6.35	3.18	2.8	0.2	0
	VCGW110304KB-1	1	3	6.35	3.18	2.8	0.4	•
	VCGW160402KB-1	1	3	9.525	4.76	4.4	0.2	0
	VCGW160404KB-1	1	3	9.525	4.76	4.4	0.4	•
	VCGW160408KB-1	1	3	9.525	4.76	4.4	0.8	0
	VCGT110302K-1DNF	1	3.5	6.35	3.18	2.8	0.2	0
	VCGT110304K-1DNF	1	3.5	6.35	3.18	2.8	0.4	0
	VCGT160404K-1DNF	1	3.5	9.525	4.76	4.4	0.4	•
	VCGT160408K-1DNF	1	3.5	9.525	4.76	4.4	0.8	•
	VCGT160412K-1DNF	1	3.5	9.525	4.76	4.4	1.2	0
	VCGT110304K-1DNM	1	3.5	6.35	3.18	2.8	0.4	0
	VCGT160404K-1DNM	1	3.5	9.525	4.76	4.4	0.4	•
	VCGT160408K-1DNM	1	3.5	9.525	4.76	4.4	0.8	•
	VCGT160412K-1DNM	1	3.5	9.525	4.76	4.4	1.2	0

[●] В наличии ○ Доступно по запросу

		Коли-		Размеры (мм)		Сплав с покрытием PCD
Код зан	Код заказа		IC	S	D1	DNN125P
	RDEW080300GN-1	1	8	3.18	2.94	0
	RDEW100300GN-1	1	10	3.18	4.6	•
	RDEW120400GN-1	1	12	4.76	4.4	0
RDEW160400GN-		1	16	4.76	5.5	•

[●] В наличии ○ Доступно по запросу

Рекомендуемые параметры резания

Инструменты PCBN

	Материал		Диапазон	Режим		Нижний пр	едел-рекоменду предел	емый-верхний
ISO	заготовки	Твердость	резания	резания	Сплав	Скорость резания Vc (м/мин)	Глубина резания ар (мм)	Подача f (мм/об)
	Чугун с шаровидным графитом	QT450~QT700	Чистовая обработка	Универ- сальный	BKC120P	150-300-500	0.10-0.20-0.50	0.05-0.12-0.3
K	Легирован- ный чугун	≽HB200	Чистовая обработка	Универ- сальный	BKN115P	200-400-800	0.05-0.20-0.50	0.05-0.20-0.40
I	Серый чугун	HB200~230	Чистовая обработка	Универ- сальный	BKN115P	400-600-1500	0.05-0.20-0.50	0.05-0.20-0.40
	Серый чугун	HB200~230	Чистовая- черновая	Универ-	BKN225Z	400-600-1200	0.05-0.30-0.50	0.05-0.20-0.50
		110200 230	обработка	сальный	BKN225S	100 000 1200	0.03 0.30 0.30	0.03 0.20 0.30
S	Материал, полученный методом ПМ	HRB50~90	Чистовая обработка	Непре- рывный	BSN115P	50-150-300	0.05-0.20-0.50	0.05-0.12-0.30
	Материал высокой твердости	≽HRC50	Чистовая обработка	Непре- рывный	BHC115P	120-150-220	0.05-0.10-0.20	0.05-0.10-0.20
	Материал высокой твердости	≽HRC50	Чистовая- черновая обработка	Универ- сальный	BHC125P	100-130-180	0.05-0.10-0.50	0.05-0.10-0.20
	Материал высокой твердости	≽HRC50	Чистовая — получистовая обработка	Преры- вистый	BHC135P	80-100-150	0.05-0.10-0.40	0.05-0.10-0.20
Н	Материал высокой твердости	≽HRC50	Чистовая — получистовая обработка	Непре- рывный	BHC210P	100-150-260	0.05-0.10-0.20	0.05-0.10-0.20
	Материал высокой твердости	≽HRC50	Чистовая — получистовая обработка	Непре- рывный	BHC215Z	120-150-230	0.05-0.10-0.20	0.05-0.10-0.15
	Материал высокой	≽HRC50	Чистовая- черновая	Универ-	BHC225P	100-140-200	0.05-0.10-0.50	0.05-0.10-0.20
	твердости	>111C30	обработка	сальный	BHC225Z	100-140-200	0.05-0.10-0.50	0.05-0.10-0.20
	Материал высокой твердости	≽HRC50	Чистовая- черновая обработка	Универ- сальный	BHN225S	100-150-190	0.05-0.10-0.50	0.05-0.10-0.20

Пластины PCBN с стружколомающей канавкой

	Маториал		Диапазон	лазон Режим грид Спи			Нижний пред	едел-рекомендуемый-верхний предел		
ISO	Материал заготовки	Твердость	резания	резания	трия канавки	Сплав	Скорость резания Vc (м/мин)	Глубина резания ар (мм)	Подача f (мм/об)	
	Материал высокой твердости	≥HRC50	Чистовая обработка	Непре- рывный	BHF	BHC210P	120-160-260	0.10-0.20-0.30	0.05-0.10-0.25	
m	Материал высокой твердости	≽HRC50	Получистовая обработка	Универ- сальный	BHF	BHC225P	100-150-200	0.10-0.20-0.30	0.05-0.10-0.25	
Н	Материал высокой твердости	≽HRC50	Чистовая обработка	Непре- рывный	ВНМ	BHC210P	110-140-220	0.30-0.50-0.70	0.10-0.20-0.30	
	Материал высокой твердости	≽HRC50	Получистовая обработка	Универ- сальный	ВНМ	BHC225P	100-120-180	0.30-0.50-0.70	0.10-0.20-0.30	

Рекомендуемые параметры резания

Инструменты PCD

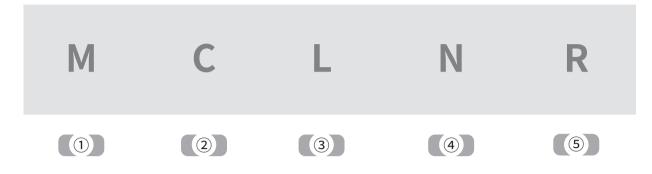
100	Материал	Диапазон	Режим		Нижний предел-рекомендуемый-верхний предел				
ISO	заготовки	резания	резания	Сплав	Скорость резания Vc (м/мин)	Глубина резания ар (мм)	Подача f (мм/об)		
	Алюминие- вые сплавы	Чистовая обработка	Универ- сальный	DNN125P	300-1200-3000	0.05-0.20-0.50	0.05-0.10-0.20		
	Медные сплавы	Чистовая обработка	Универ- сальный	DNN125P	200-500-1000	0.05-0.40-2.00	0.05-0.10-0.20		
	Пластик	Чистовая обработка	Универ- сальный	DNN125P	100-600-1000	0.10-0.40-2.00	0.05-0.10-0.40		
N	Деревянные, неорганиче- ские листы	Чистовая обработка	Универ- сальный	DNN125P	200-2000-4000	0.10-0.50-2.00	0.05-0.10-0.40		
	Твердые сплавы	Чистовая обработка	Универ- сальный	DNN125P	10-20-30	0.05-0.20-0.50	0.05-0.10-0.20		
	Графит	Чистовая обработка	Универ- сальный	DNN125P	100-300-600	0.10-0.40-2.00	0.10-0.25-1.00		

Пластины PCBN с стружколомающей канавкой

ISO	Материал заготовки		Режим	Нижний предел-рекомендуемый-верхний предел			
			резания Сплав		Скорость резания Vc (м/мин)	Глубина резания ар (мм)	Подача f (мм/об)
	Алюминие- вые сплавы	Чистовая обработка	Универ- сальный	DNN125P	300-1200-3000	0.05-0.20-0.50	0.05-0.10-0.20
N	Медные сплавы	Чистовая обработка	Универ- сальный	DNN125P	200-500-1000	0.05-0.40-2.00	0.05-0.10-0.20
	Пластик	Чистовая обработка	Универ- сальный	DNN125P	100-600-1000	0.10-0.40-2.00	0.05-0.10-0.40
	Деревянные, неорганиче- ские листы	Чистовая обработка	Универ- сальный	DNN125P	200-2000-4000	0.10-0.50-2.00	0.05-0.10-0.40
	Твердые сплавы	Чистовая обработка	Универ- сальный	DNN125P	10-20-30	0.05-0.20-0.50	0.05-0.10-0.20
	Графит	Чистовая обработка	Универ- сальный	DNN125P	100-300-600	0.10-0.40-2.00	0.10-0.25-1.00

F

Стандартные токарные державки


Ведомость токарных державок

MCBNR/L	MCLNR/L	MDJNR/L	MDPNN	MDQNR/L
P158	P158	P159	P159	P160
MSBNR/L	MSKNR/L	MSSNR/L	MTENN	MTFNR/L
P160	P161	P161	P162	P162
MTGNR/L	MTJNR/L	MVJNR/L	MVQNR/L	MWLNR/L
P163	P163	P164	P164	P165
>				¥
PCBNR/L	PCLNR/L	PDJNR/L	PSBNR/L	PSSNR/L
P165	P166	P167	P168	P169
	•	3 °		
PRDCN	PTGNR/L	PWLNR/L	DCLNR/L-HPC	SDUCR/L
P170	P171	P171	P172	P172
	6	Ÿ		
DVJNR/L-HPC	DWLNR/L-HPC			
P173	P173			
SCLCR/L	SDJCR/L	SSDCN	STGCR/L	SVJCR/L
P174	P174	P175	P175	P176
		(m)		

Ведомость токарных державок

SWLCR/L	SCLCR/L	SCLCR/L-A16	SCKCR/L	SDUCR/L
P177	P180	P182	P182	P183
•				
SDQCR/L	SDXCR/L	SSKCR/L	STUCR/L	STWCR/L
P184	P185	P185	P186	P186
			•	
STFCR/L	SVUCR/L	SWLCR/L	SCLPR/L	STFPR/L
P187	P188	P189	P189	P190

Система идентификации токарных державок для наружной обработки

① Прижимный узел				
D	Двойной прижим			
М	Прижим клином Двойной прижим для тяжелого резания			
Р	Прижим рычагом			
S	Прижим винтом			

④ Задний угол пластины					
В	5°	5.			
С	7°	20			
D	15°	5.			
E	20°	70.			
N	0°	0.			
Р	11°	77.			

	② Форма пластины				
С	Ромб 80°				
D	Ромб 55°				
R	Круг				
S	Квадрат				
Т	Правильный треугольник	\triangle			
V	Ромб 35°				
W	Шестиугольник				
	Особая форма				

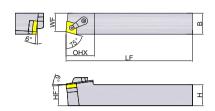
⑤ Нап	⑤ Направление резания				
R					
L					
N					

3 Гл	павный угол в плане
А	8.
В	₹.
D	B .
Е	(F).
F	
G	See .
J	8.
К	
L	3,
Р	(E)
Q	
S	E.
V	

25 25 M 12

(6) (7) (8) (9)

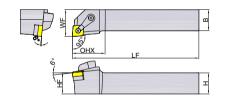
⑥ Высота корпуса инструмента				
*				
Код	Высота			
08	8			
10	10			
12	12			
16	16			
20	20			
25	25			
32	32			


🤊 Ширина корп	уса инструмента			
Код	Ширина			
08	8			
10	10			
12	12			
16	16			
20	20			
25	25			
32	32			

® Длина корпу	са инструмента				
	U.S.				
Код	Ширина				
E	70				
F	80				
Н	100				
К	125				
М	150				
Р	170				
Q	180				
R	200				

	⑨ длина режущей кромки (мм)							
Вписанная окружность	<u>C</u>	D	R	S	<u></u>	<u></u>	<u> </u>	
6.35	06	07	-	06	11	11	04	
9.525	09	11	-	09	16	16	06	
12.7	12	15	-	12	22	-	08	
15.875	16	-	-	15	-	-	-	
19.05	19	-	-	19	-	-	-	
25.4	25	-	-	25	-	-	-	
32	-	-	32	-	-	-	-	

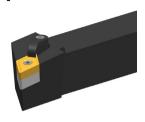
MCBNR/L

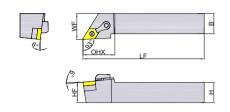


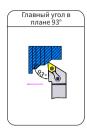
Код заказа		Pa	ізмер	оы (м	м)		Комплек-	Подкладная пластина	Штифт	При- жим- ная планка	Винт с двой- ной резьбой	Ключ	Вес (кг)	H: ЛІ ЧІ	И-
	Н	В	LF	ОНХ	HF	WF	пластина		Ş			/		R	L
MCBNR/L2020K12	20	20	125	32	20	17	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060200H	TH25LH TH30LH	0.4	•	0
MCBNR/L2525M12	25	25	150	35	25	22	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.78	•	•
MCBNR/L3232P12	32	32	170	35	32	27	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	•	•
MCBNR/L2525M16	25	25	150	42	25	22	CN**1606**	DCN1604MH	SPM080220FH	САМОЗН	SDM060250H	TH30LH	0.78	•	0
MCBNR/L3232P19	32	32	170	42	32	27	CN**1906**	DCN1904MH	SPM100240FH	CAM05H	SDM080350FH	TH40LH	1.37	•	•

● В наличии ○ Доступно по запросу

MCLNR/L

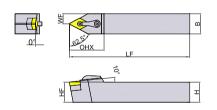





Код заказа		Pa	ізмер	оы (м	м)		Комплек- тующая пластина	Подкладная пластина	Штифт	При- жим- ная планка	Винт с двой- ной резьбой	Ключ	Вес (кг)	ЛІ	а- и- ие
	Н	В	LF	ОНХ	HF	WF			Ş					R	L
MCLNR/L2020K12	20	20	125	32	20	25	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060200H	TH25LH TH30LH	0.4	•	•
MCLNR/L2525M12	25	25	150	32	25	32	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.78	•	•
MCLNR/L3232P12	32	32	170	32	32	40	CN**1204**	DCN1204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	•	•
MCLNR/L2525M16	25	25	150	38	25	32	CN**1606**	DCN1604MH	SPM080220FH	CAM03H	SDM060250H	TH30LH	0.78	•	•
MCLNR/L3232P16	32	32	170	38	32	40	CN**1606**	DCN1604MH	SPM080220FH	CAM03H	SDM060280H	TH30LH	1.37	•	•
MCLNR/L3232P19	32	32	170	42	32	40	CN**1906**	DCN1904MH	SPM100240FH	CAM05H	SDM080350FH	TH40LH	1.37	•	•

lacktriangle В наличии \bigcirc Доступно по запросу

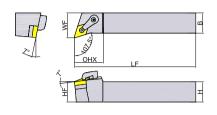
MDJNR/L



Код заказа		Pa	ізмер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двой- ной резь- бой	Ключ	Вес (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина							R L
MDJNR/L2020K11	20	20	125	32	20	25	DN**1104**	DDN1103MH	SPM050130H	CAM02H	SDM060200H	TH20LH TH30LH	0.4	• •
MDJNR/L2020K1504	20	20	125	38	20	25	DN**1504**	DDN1504MH	SPM060170H	CAM03H	SDM060200H	TH25LH TH30LH	0.4	• •
MDJNR/L2525M1504	25	25	150	38	25	32	DN**1504**	DDN1504MH	SPM060170H	CAM03H	SDM060250H	TH25LH TH30LH	0.78	• •
MDJNR/L2525M1506	25	25	150	38	25	32	DN**1506**	DDN1504MH	SPM060190H	CAM03H	SDM060250H	TH25LH TH30LH	0.78	• •
MDJNR/L3232P1506	32	32	170	38	32	40	DN**1506**	DDN1504MH	SPM060190H	CAM03H	SDM060280H	TH25LH TH30LH	1.37	• •

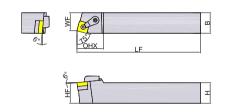
● В наличии ○ Доступно по запросу

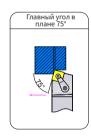
MDPNN



Код заказа		Pa	азме	ры (м	1М)		Комплек-	Подкладная пластина	Штифт	При- жим- ная планка	Винт с двой- ной резьбой	Ключ	Вес (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		7	_		чие
MDPNN2020K11	20	20	125	35	20	10	DN**1104**	DDN1103MH	SPM050130H	CAM02H	SDM060200H	TH20LH TH30LH	0.38	•
MDPNN2020K1504	20	20	125	42	20	10	DN**1504**	DDN1504MH	SPM060170H	CAM03H	SDM060200H	TH25LH TH30LH	0.38	•
MDPNN2525M1504	25	25	150	42	25	12.5	DN**1504**	DDN1504MH	SPM060170H	CAM03H	SDM060250H	TH25LH TH30LH	0.76	•
MDPNN2525M1506	25	25	150	42	25	12.5	DN**1506**	DDN1504MH	SPM060190H	CAM03H	SDM060250H	TH25LH TH30LH	0.76	•
MDPNN3232P1506	32	32	170	42	32	16	DN**1506**	DDN1504MH	SPM060190H	CAM03H	SDM060280H	TH25LH TH30LH	1.35	•

MDQNR/L

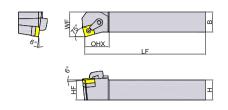


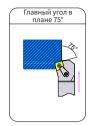

Код заказа		Pa	ізмер	оы (м	м)		Комплек-	Подкладная пластина	Штифт	При- жим- ная планка	Винт с двой- ной резьбой	Ключ	Вес (кг)	H. ЛІ ЧИ	
	Н	В	LF	ОНХ	HF	WF	пластина		Ş			1		R	L
MDQNR/L2020K11	20	20	125	32	20	25	DN**1104**	DDN1103MH	SPM050130H	CAM02H	SDM060200H	TH20LH TH30LH	0.4	•	0
MDQNR/ L2020K1504	20	20	125	38	20	25	DN**1504**	DDN1504MH	SPM060170H	САМОЗН	SDM060200H	TH25LH TH30LH	0.4	•	0
MDQNR/ L2525M1504	25	25	150	38	25	32	DN**1504**	DDN1504MH	SPM060170H	CAM03H	SDM060250H	TH25LH TH30LH	0.78	•	0
MDQNR/ L3232P1506	32	32	170	38	32	40	DN**1506**	DDN1504MH	SPM060190H	CAM03H	SDM060280H	TH25LH TH30LH	1.37	•	0

lacktriangle В наличии \bigcirc Доступно по запросу

MSBNR/L

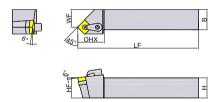


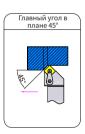




Код заказа		Pa	змер	оы (м	м)		Комплек-	Подкладная пластина	Штифт	При- жим- ная планка	Винт с двой- ной резьбой	Ключ	Bec (кг)	Л	а- и- ие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		-			R	L
MSBNR/L2020K12	20	20	125	32	20	17	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060200H	TH25LH TH30LH	0.4	•	0
MSBNR/L2525M12	25	25	150	32	25	22	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.78	•	0
MSBNR/L3232P12	32	32	170	32	32	27	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	•	0
MSBNR/L2525M15	25	25	150	38	25	22	SN**1506**	DSN1504MH	SPM080220FH	CAM03H	SDM060250H	TH30LH	0.78	•	0
MSBNR/L3232P19	32	32	170	42	32	27	SN**1906**	DSN1904MH	SPM100240FH	CAM05H	SDM080350FH	TH40LH	1.37	•	•

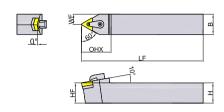
MSKNR/L

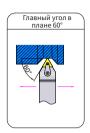



Код заказа		Pa	змер	ы (м	м)		Комплек- тующая	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двой- ной резь- бой	Ключ	Bec (кг)		ли- ие
	Н	В	LF	ОНХ	HF	WF	пластина		8			_	(KI)	R	L
MSKNR/ L2020K12	20	20	125	35	20	25	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060200H	TH25LH TH30LH	0.4	•	0
MSKNR/ L2525M12	25	25	150	35	25	32	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.78	•	0
MSKNR/ L3232P12	32	32	170	35	32	40	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	•	0
MSKNR/ L2525M15	25	25	150	42	25	32	SN**1506**	DSN1504MH	SPM080220FH	САМОЗН	SDM060250H	TH30LH	0.78	•	0
MSKNR/ L3232P19	32	32	170	48	32	40	SN**1906**	DSN1904MH	SPM100240FH	CAM05H	SDM080350FH	TH40LH	1.37	•	0

●В наличии ○ Доступно по запросу

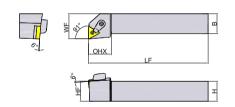
MSSNR/L





Код заказа		Pa	змер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двой- ной резь- бой	Ключ	Вес (кг)	Ha ли чи	/ 1-
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		-	1		R	L
MSSNR/L2020K12	20	20	125	32	20	25	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060200H	TH25LH TH30LH	0.39	•	•
MSSNR/L2525M12	25	25	150	32	25	32	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.77	•	•
MSSNR/L3232P12	32	32	170	32	32	40	SN**1204**	DSN1204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.36	•	0
MSSNR/L2525M15	25	25	150	38	25	32	SN**1506**	DSN1504MH	SPM080220FH	САМ03Н	SDM060250H	TH30LH	0.77	•	0
MSSNR/L3232P19	32	32	170	42	32	40	SN**1906**	DSN1904MH	SPM100240FH	CAM05H	SDM080350FH	TH40LH	1.36	•	•

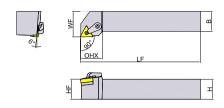
MTENN

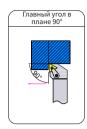


Код заказа		Pa	змер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двойной резьбой	Ключ	Bec (кг)	На-
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		8	_		чие
MTENN2020K16	20	20	125	32	20	10	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060200H	TH20LH TH30LH	0.38	•
MTENN2525M16	25	25	150	32	25	12.5	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.76	•
MTENN3232P16	32	32	170	35	32	16	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060280H	TH20LH TH30LH	1.35	0
MTENN3232P22	32	32	170	38	32	16	TN**2204**	DTN2204MH	SPM060170H	CAM02H	SDM060280H	TH25L H TH30LH	1.35	•

●В наличии ○ Доступно по запросу

MTFNR/L




Код заказа		Pa	змер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двойной резьбой	Ключ	Вес (кг)	ЛІ	а- и- ие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş			/		R	L
MTFNR/L2020K16	20	20	125	32	20	25	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.4	•	0
MTFNR/L2525M16	25	25	150	32	25	32	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.78	•	0
MTFNR/L3232P16	32	32	170	32	32	40	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060280H	TH20LH TH30LH	1.37	•	0
MTFNR/L3232P22	32	32	170	38	32	40	TN**2204**	DTN2204MH	SPM060170H	CAM02H	SDM060280H	TH25L H TH30LH	1.37	•	0

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

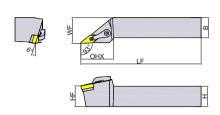
MTGNR/L



Код заказа		Pa	ізмер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двой- ной резь- бой	Ключ	Вес (кг)	Л	а- и- ие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş			_		R	L
MTGNR/L2020K16	20	20	125	32	20	25	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.4	•	0
MTGNR/L2525M16	25	25	150	32	25	32	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.78	•	•
MTGNR/L3232P16	32	32	170	32	32	40	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060280H	TH20LH TH30LH	1.37	•	0
MTGNR/L3232P22	32	32	170	38	32	40	TN**2204**	DTN2204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	•	0

●В наличии ○ Доступно по запросу

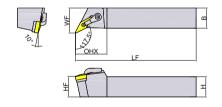
MTJNR/L



Код заказа		Pa	змер	оы (м	м)		Комплек-	Подклад- ная пласти- на	Штифт	При- жим- ная планка	Винт с двой- ной резь- бой	Ключ	Вес (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş					R L
MTJNR/L2020K16	20	20	125	32	20	25	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.4	• •
MTJNR/L2525M16	25	25	150	32	25	32	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060250H	TH20LH TH30LH	0.78	• •
MTJNR/L3232P16	32	32	170	32	32	40	TN**1604**	DTN1603MH	SPM050130H	CAM02H	SDM060280H	TH20LH TH30LH	1.37	• 0
MTJNR/L3232P22	32	32	170	38	32	40	TN**2204**	DTN2204MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	• •

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

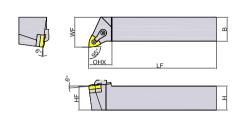
MVJNR/L

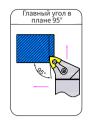


Код заказа		Pa	змер	оы (м	м)		Комплек- тующая	Подкладная пластина	Штифт	При- жимная планка	Винт с двойной резьбой	Ключ	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		-		(кг)	R L
MVJNR/L2020K16	20	20	125	45	20	25	VN**1604**	DVN1603MH	SPM050130H	CAM04H	SDM060200H	TH20LH TH30LH	0.4	• •
MVJNR/L2525M16	25	25	150	45	25	32	VN**1604**	DVN1603MH	SPM050130H	CAM04H	SDM060250H	TH20LH TH30LH	0.78	• •
MVJNR/L3232P16	32	32	170	45	32	40	VN**1604**	DVN1603MH	SPM050130H	CAM04H	SDM060280H	TH20LH TH30LH	1.37	• •

●В наличии ОДоступно по запросу

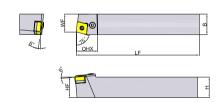
MVQNR/L

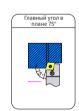




Код заказа		Pa	змер	оы (м	м)		Комплек- тующая	Подклад- ная пласти- на	Штифт	При- жимная планка	Винт с двойной резьбой	Ключ	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		8		(кг)	R L
MVQNR/L2020K16	20	20	125	38	20	25	VN**1604**	DVN1603MH	SPM050130H	CAM02H	SDM060200H	TH20LH TH30LH	0.4	• •
MVQNR/L2525M16	25	25	150	38	25	32	VN**1604**	DVN1603MH	SPM050130H	CAM03H	SDM060250H	TH20LH TH30LH	0.78	• •
MVQNR/L3232P16	32	32	170	38	32	40	VN**1604**	DVN1603MH	SPM050130H	CAM03H	SDM060280H	TH20LH TH30LH	1.37	• •

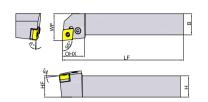
MWLNR/L

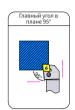



Код заказа		Pa	змер	оы (м	м)		Комплек- тующая	Подклад- ная пласти- на	Штифт	При- жимная планка	Винт с двойной резьбой	Ключ	Bec (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина		Ş		8		(KI)	R L
MWLNR/ L2525M06T3	25	25	150	28	25	32	WN**06T3**	DWN0603MH	SPM050130H	CAM01H	SDM050200H	TH20LH TH25LH	0.78	• •
MWLNR/ L2020K0604	20	20	125	28	20	25	WN**0604**	DWN0603MH	SPM050130H	CAM01H	SDM050200H	TH20LH TH25LH	0.4	• •
MWLNR2525M0604	20	20	150	28	25	32	WN**0604**	DWN0603MH	SPM050130H	CAM01H	SDM050200H	TH20LH TH25LH	0.78	• •
MWLNR/L2020K08	20	20	125	32	20	25	WN**0804**	DWN0804MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.4	• •
MWLNR/L2525M08	25	25	150	35	25	32	WN**0804**	DWN0804MH	SPM060170H	CAM02H	SDM060250H	TH25LH TH30LH	0.4	• •
MWLNR/L3232P08	32	32	170	35	32	40	WN**0804**	DWN0804MH	SPM060170H	CAM02H	SDM060280H	TH25LH TH30LH	1.37	• •

●В наличии ○ Доступно по запросу

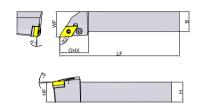
PCBNR/L




Код заказа		Pa	азме	ры (и	им)		Комплек- тующая	Подкладная пластина	Фиксатор	Рычаг г	Винт рычага	Ключ h	Bec	ЛІ	а- и- ие
	Н	В	LF	ОНХ	HF	WF	пластина					1	(кг)	R	L
PCBNR/L2020K12	20	20	125	30	20	17	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	•	0
PCBNR/L2525M12	25	25	150	26	25	22	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	•	0
PCBNR/L3232P12	32	32	170	27	32	29	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	•	0
PCBNR/L2525M16	25	25	150	32	25	22	CN**1606**	DCN1604PD	PA5D	LA5D	SLM080250FD	TH30LD	0.78	•	0
PCBNR/L3232P16	32	32	170	33	32	27	CN**1606**	DCN1604PD	PA5D	LA5D	SLM080250FD	TH30LD	1.37	•	0
PCBNR/L3232P19	32	32	170	38	32	27	CN**1906**	DCN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	1.37	•	0
PCBNR/L4040S19	40	40	250	38	40	35	CN**1906**	DCN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	3.2	•	0
PCBNR/L4040S2509	40	40	250	50	40	37	CN**2509**	DCN2504PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	•	0

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

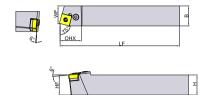
PCLNR/L

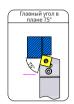


Код заказа		Pa	азме	ры (и	им)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина					1	(кг)	R L
PCLNR/L2020K12	20	20	125	28	20	26	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	• 0
PCLNR/L2525M12	25	25	150	28	25	32	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	• 0
PCLNR/L3225P12	32	25	170	32	32	32	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.09	• 0
PCLNR/L3232P12	32	32	170	32	32	39	CN**1204**	DCN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	• 0
PCLNR/L2525M16	25	25	150	36	25	32	CN**1606**	DCN1604PD	PA5D	LA5D	SLM080250FD	TH30LD	0.78	• 0
PCLNR/L3225P16	32	25	170	36	32	32	CN**1606**	DCN1604PD	PA5D	LA5D	SLM080250FD	TH30LD	1.09	• 0
PCLNR/L3232P16	32	32	170	36	32	39	CN**1606**	DCN1604PD	PA5D	LA5D	SLM080250FD	TH30LD	1.37	• 0
PCLNR/L3232P19	32	32	170	40	32	40	CN**1906**	DCN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	1.37	• 0
PCLNR/L4040S19	40	40	250	40	40	49	CN**1906**	DCN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	3.2	• 0
PCLNR/L4040S2509	40	40	250	47	40	50	CN**2509**	DCN2504PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	• 0

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

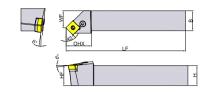
PDJNR/L





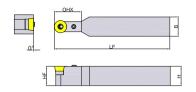
Код заказа		Pā	азме	ры (м	им)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина					1	(кг)	R L
PDJNR/L2020K11	20	20	125	25	20	25	DN**1104**	DDN11T2PD	PA3D	LA3D	SLM060130D	TH25LD	0.38	• 0
PDJNR/L2525M11	25	25	150	30	25	30	DN**1104**	DDN11T2PD	PA3D	LA3D	SLM060130D	TH25LD	0.78	• 0
PDJNR/L2020K1506	20	20	125	32	20	25	DN**1506**	DDN1503PD	PA4D	LA4BD	SLM080250FD	TH30LD	0.38	• 0
PDJNR/L2525M1506	25	25	150	35	25	32	DN**1506**	DDN1503PD	PA4D	LA4BD	SLM080250FD	TH30LD	0.78	• 0
PDJNR/L3225P1506	32	25	170	35	32	32	DN**1506**	DDN1503PD	PA4D	LA4BD	SLM080250FD	TH30LD	1.09	• 0
PDJNR/L3232P1506	32	32	170	35	32	38	DN**1506**	DDN1503PD	PA4D	LA4BD	SLM080250FD	TH30LD	1.37	• 0
PDJNR/L2020K1504	20	20	125	35	20	25	DN**1504**	DDN1503PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	• 0
PDJNR/L2525M1504	25	25	150	35	25	32	DN**1504**	DDN1503PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	• 0
PDJNR/L3232P1504	32	32	170	35	32	38	DN**1504**	DDN1503PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	• 0

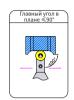
PSBNR/L



Код заказа		Pā	азме	ры (м	им)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина					1	(кг)	R L
PSBNR/L2020K12	20	20	125	28	20	17	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	• 0
PSBNR/L2525M12	25	25	150	28	25	22	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	• 0
PSBNR/L3225P12	32	25	170	28	32	22	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.09	• 0
PSBNR/L3232P12	32	32	170	28	32	29	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	• 0
PSBNR/L2525M15	25	25	150	32	25	22	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	0.78	• 0
PSBNR/L3225P15	32	25	170	32	32	22	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	1.09	• 0
PSBNR/L3232P15	32	32	170	32	32	28	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	1.37	• 0
PSBNR/L3232P19	32	32	170	45	32	36	SN**1906**	DSN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	1.37	• 0
PSBNR/L4040S19	40	40	250	45	40	35	SN**1906**	DSN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	3.2	• 0
PSBNR/L4040S2507	40	40	250	50	40	35	SN**2507**	DSN2506PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	• 0
PSBNR/L4040S2509	40	40	250	50	40	35	SN**2509**	DSN2504PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	• 0

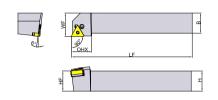
PSSNR/L





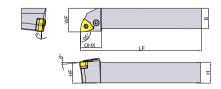
Код заказа		Pä	азмеј	ры (м	им)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Bec	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина			b		1	(кг)	R L
PSSNR/L2020K12	20	20	125	28	20	25	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	• 0
PSSNR/L2525M12	25	25	150	32	25	30	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	• 0
PSSNR/L3225P12	32	25	170	32	32	30	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.09	• 0
PSSNR/L3232P12	32	32	170	32	32	38	SN**1204**	DSN1203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	• 0
PSSNR/L2525M15	25	25	150	35	25	30	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	0.78	• 0
PSSNR/L3225P15	32	25	170	35	32	30	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	1.09	• 0
PSSNR/L3232P15	32	32	170	35	32	38	SN**1506**	DSN1504PD	PA5D	LA5D	SLM080250FD	TH30LD	1.37	• 0
PSSNR/L3232P19	32	32	170	40	32	38	SN**1906**	DSN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	1.37	• 0
PSSNR/L4040S19	40	40	250	50	40	48	SN**1906**	DSN1904PD	PA6D	LA6D	SLM100270FD	TH40LD	3.2	• 0
PSSNR/L4040S2507	40	40	250	50	40	48	SN**2507**	DSN2506PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	• 0
PSSNR/L4040S2509	40	40	250	50	40	48	SN**2509**	DSN2504PD	PA8D	LA8D	SLM120360FD	TH50LD	3.2	• 0

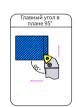
PRDCN



Код заказа	Н	В	азме LF	ры (і ОНХ		WF	Комплек- тующая пластина	Подкладная пластина	Фиксатор	Рычагт	Винт рычага	Ключ h	Вес (кг)	На- ли- чие
PRDCN2525M16	25	25	150	35	25	10	RCMX1606**	DRN1604PD	PA4D	LCL16CD	SLM060210D	TH25LD	0.78	•
PRDCN3232P16	32	32	170	32	32	16	RCMX1606**	DRN1604PD	PA4D	LCL16CD	SLM060210D	TH25LD	1.37	•
PRDCN3232P20	32	32	170	40	32	16	RCMX2006**	DRN2004PD	PA5D	LCL20CD	SLM080250FD	TH30LD	1.37	•
PRDCN4040S20	40	40	250	45	40	20	RCMX2006**	DRN2004PD	PA5D	LCL20CD	SLM080250FD	TH30LD	1.37	•
PRDCN3232P25	32	32	170	45	32	16	RCMX2507**	DRN2506PD	PA6D	LCL25CD	SLM100300FD	TH40LD	1.37	•
PRDCN4040S25	40	40	250	50	40	20	RCMX2507**	DRN2506PD	PA6D	LCL25CD	SLM100300FD	TH40LD	3.2	•

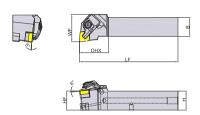
PTGNR/L

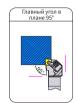



Код заказа		Pa	азме	ры (г	им)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Вес (кг)	Н: лі чи	
	Н	В	LF	ОНХ	HF	WF	пластина					1	(KI)	R	L
PTGNR/L2020K16	20	20	125	25	20	23	TN**1604**	DTN16T2PD	PA3D	LA3D	SLM060170D	TH25LD	0.4	•	0
PTGNR/L2525M16	25	25	150	25	25	29	TN**1604**	DTN16T2PD	PA3D	LA3D	SLM060170D	TH25LD	0.78	•	0
PTGNR/L3225P16	32	25	170	32	32	29	TN**1604**	DTN16T2PD	PA3D	LA3D	SLM060170D	TH25LD	1.09	•	0
PTGNR/L3232P16	32	32	170	32	32	37	TN**1604**	DTN16T2PD	PA3D	LA3D	SLM060170D	TH25LD	1.37	•	0
PTGNR/L2525M22	25	25	150	30	25	30	TN**2204**	DTN2203PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	•	0
PTGNR/L3225P22	32	25	170	32	32	30	TN**2204**	DTN2203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.09	•	0
PTGNR/L3232P22	32	32	170	32	32	37	TN**2204**	DTN2203PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	•	0

●В наличии ○ Доступно по запросу

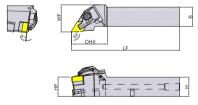
PWLNR/L





Код заказа		P	азме	ры (м	ім)		Комплек- тующая	Подкладная пластина	Фикса- тор	Рычаг r	Винт рычага	Ключ h	Bec	Л	а- и- ие
	Н	В	LF	ОНХ	HF	WF	пластина			b		1	(кг)	R	L
PWLNR/L2020K0604	20	20	125	25	20	23	WN**0604**	DWN06T2PD	PA3D	LA3D	SLM060170D	TH25LD	0.4	•	0
PWLNR/L2525M0604	25	25	150	25	25	28	WN**0604**	DWN06T2PD	PA3D	LA3D	SLM060170D	TH25LD	0.78	•	0
PWLNR/L2020K08	20	20	125	26	20	25	WN**0804**	DWN0803PD	PA4D	LA4D	SLM080210FD	TH30LD	0.4	•	0
PWLNR/L2525M08	25	25	150	26	25	29	WN**0804**	DWN0803PD	PA4D	LA4D	SLM080210FD	TH30LD	0.78	•	0
PWLNR/L3232P08	32	32	170	26	32	37	WN**0804**	DWN0803PD	PA4D	LA4D	SLM080210FD	TH30LD	1.37	•	0

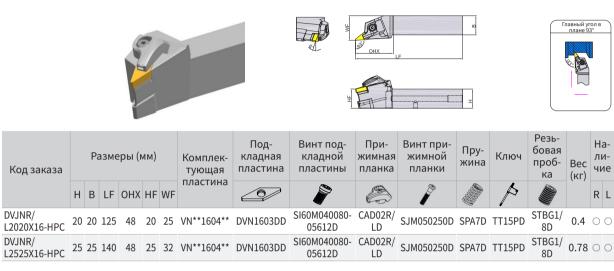
DCLNR/L-HPC (с внутренним охлаждением при высоком давлении)

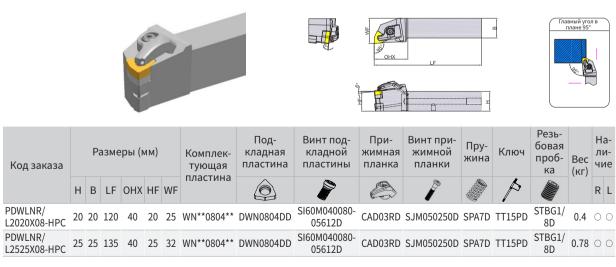


Код заказа		Pa	азмє	еры (і	мм)		Комплек-	Под- кладная пластина	Винт под- кладной пластины	При- жимная планка	Винт при- жимной планки	Пру- жина	Ключ	Резь- бовая проб- ка	Вес (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина						Þ			R L
DCLNR/ L2020X12-HPC	20	20	115	38.5	20	25	CN**1204**	DCN1204DD	SI60M040080- 05612D	CAD01R/ LD	SJM050250D	SPA7D	TT15PD	STBG1/ 8D	0.4	00
DCLNR/ L2525X12-HPC	25	25	130	38.5	25	32	CN**1204**	DCN1204DD	SI60M040080- 05612D	CAD01R/ LD	SJM050250D	SPA7D	TT15PD	STBG1/ 8D	0.78	00

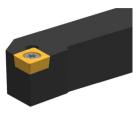
●В наличии ○ Доступно по запросу

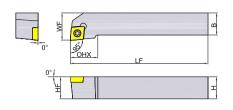
DDJNR/L-HPC (с внутренним охлаждением при высоком давлении)




Код заказа		Pa	азмє	еры (м	мм)		Комплектующая	Под- кладная пластина	Винт под- кладной пластины	При- жимная планка	Винт при- жимной планки	Пру- жина	Ключ	Резь- бовая проб- ка	Вес (кг)	На- ли- чие
	Н	В	LF	ОНХ	HF	WF	пластина						Þ			R L
DDJNR/ L2020X15-HPC	20	20	125	45	20	25	DN**1506**	DDN1504DD	SI60M040080- 05612D	CAD01R/ LD	SJM050250D	SPA7D	TT15PD	STBG1/ 8D	0.4	00
DDJNR/ L2525X15-HPC	25	25	140	45	25	32	DN**1506**	DDN1504DD	SI60M040080- 05612D	CAD01R/ LD	SJM050250D	SPA7D	TT15PD	STBG1/ 8D	0.78	00

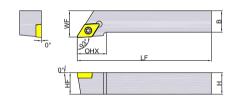
DVJNR/L-HPC (с внутренним охлаждением при высоком давлении)




●В наличии ○ Доступно по запросу

DWLNR/L-HPC (с внутренним охлаждением при высоком давлении)

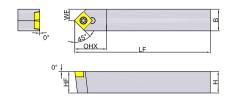
SCLCR/L

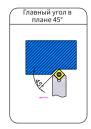


Vол ээмэээ		P	азмер	оы (ми	и)		Комплектую- щая пласти- F на		Ключ	Bec	Наличие	
Код заказа	Н	В	LF	ОНХ	HF	WF			Þ	(кг)	R	L
SCLCR/L1010F06	10	10	80	12	10	12	CC**0602**	SI60M025060-03510H	TT08PH	0.06	•	•
SCLCR/L1212H09	12	12	100	20	12	16	CC**09T3**	SI60M040100-05812H	TT15PH	0.11	•	0
SCLCR/L1616H09	16	16	100	20	16	20	CC**09T3**	SI60M040100-05812H	TT15PH	0.2	•	•
SCLCR/L2020K09	20	20	125	20	20	25	CC**09T3**	SI60M040100-05812H	TT15PH	0.4	•	•
SCLCR/L2525M12	25	25	150	20	25	32	CC**1204**	SI60M050120-07012H	TT20PH	0.78	•	•

●В наличии ○ Доступно по запросу

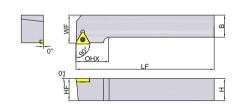
SDJCR/L




Vод ээмэээ		Р	азмер	ы (ми	и)		Комплектую-	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	ОНХ	HF	WF	щая пластина		Þ	(кг)	R	L
SDJCR/L1010F07	10	10	80	15	10	12	DC**0702**	SI60M025060-03510H	TT08PH	0.06	•	•
SDJCR1212H07	12	12	100	15	12	16	DC**0702**	SI60M025060-03510H	TT08PH	0.11	•	
SDJCR/L1616H11	16	16	100	20	16	20	DC**11T3**	SI60M040100-05812H	TT15PH	0.2	•	•
SDJCR/L2020K11	20	20	125	22	20	25	DC**11T3**	SI60M040100-05812H	TT15PH	0.4	•	•
SDJCR/L2525M11	25	25	150	25	25	32	DC**11T3**	SI60M040100-05812H	TT15PH	0.78	•	•

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

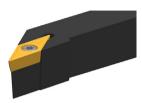
SSDCN

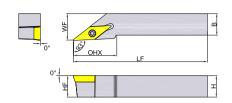


Кол ээ кэээ		P	азмер	оы (ми	4)		Комплектую-	Винт	Ключ	Bec	Наличие	
Код заказа	Н	В	LF	ОНХ	HF	WF	щая пластина		Þ	(кг)	Паличие	
SSDCN1212H09	12	12	80	-	12	6	SC**09T3**	SI60M040100-05812H	TT15PH	0.1	•	
SSDCN1616H09	16	16	100	-	16	8	SC**09T3**	SI60M040100-05812H	TT15PH	0.19	•	
SSDCN2020K09	20	20	125	-	20	10	SC**09T3**	SI60M040100-05812H	TT15PH	0.39	0	
SSDCN2525M12	25	25	150	-	25	12.5	SC**1204**	SI60M050120-07012H	TT20PH	0.77	•	

●В наличии ○ Доступно по запросу

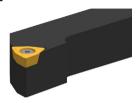
STGCR/L

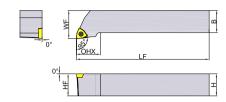


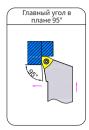


Vод ээмэээ		Р	азмер	оы (ми	4)		Комплектую- щая пластина	Винт	Ключ	Bec	Налі	ичие
Код заказа	Н	В	LF	ОНХ	HF	WF			Þ	(кг)	R	L
STGCR1010F09	10	10	80	12	10	12	TC**0902**	SI60M022060-03008H	TT06PH	0.06	•	
STGCR/L1212H11	12	12	100	16	12	16	TC**1102**	SI60M025060-03510H	TT08PH	0.11	•	0
STGCR/L1616H11	16	16	100	20	16	20	TC**1102**	SI60M025060-03510H	TT08PH	0.2	•	•
STGCR/L2020K16	20	20	125	25	20	25	TC**16T3**	SI60M040100-05812H	TT15PH	0.4	•	•
STGCR/L2525M16	25	25	150	25	25	32	TC**16T3**	SI60M040100-05812H	TT15PH	0.78	•	•

SVJCR/L







Код заказа		Р	азмер	оы (ми	и)		Комплектую- щая пластина	Винт	Ключ	Вес (кг)	Наличие	
под заказа	Н	В	LF	ОНХ	HF	WF			Þ		R	L
SVJCR1212H11	12	12	100	25	12	16	VC**1103**	SI60M025060-03510H	TT08PH	0.1	•	
SVJCR/L1616H11	16	16	100	25	16	20	VC**1103**	SI60M025060-03510H	TT08PH	0.19	•	•
SVJCR/L2020K16	20	20	125	35	20	25	VC**1604**	SI60M040100-05812H	TT15PH	0.39	•	•
SVJCR/L2525M16	25	25	150	35	25	32	VC**1604**	SI60M040100-05812H	TT15PH	0.77	•	•

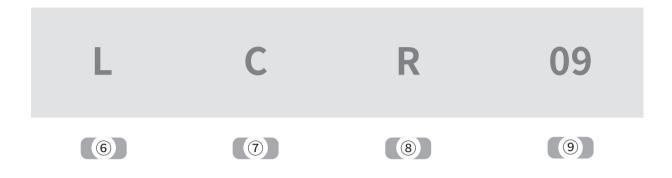
SWLCR/L

Код заказа		Р	азмер	оы (ми	и)		Комплектую- щая пластина	Винт	Ключ	Bec	Наличие		
код заказа	Н	В	LF	ОНХ	HF	WF			Þ	(кг)	R	L	
SWLCR/L1212H06	12	12	100	15	12	16	WC**06T3**	SI60M040100-05812H	TT15PH	0.11	•	•	
SWLCR/L1616H06	16	16	100	15	16	20	WC**06T3**	SI60M040100-05812H	TT15PH	0.2	•	•	
SWLCR/L2020K06	20	20	125	15	20	25	WC**06T3**	SI60M040100-05812H	TT15PH	0.4	•	•	
SWLCR/L2525M06	25	25	150	20	25	32	WC**06T3**	SI60M040100-05812H	TT15PH	0.78	•	•	

Система идентификации токарных державок для внутренней обработки

S 16 M S C

(1) (2) (3) (4) (5)


① Материал державки							
А	Стальные державки с охлаждающим отверстием						
С	Твердосплавные державки						
E	Твердосплавные державки с охлаждающим отверстием						
S	Стальные державки						

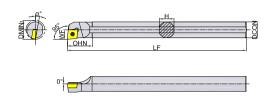
	⑤ Форма плас	тины
С	Ромб 80°	
D	Ромб 55°	
R	Круг	
S	Квадрат	
Т	Правильный треугольник	
V	Ромб 35°	
W	Шестиугольник	
Χ	Особая форма	

	② Диаметр головки								
	ncon ncon								
Код	Диаметр								
08	8								
10	10								
12	12								
16	16								
20	20								
25	25								
32	32								
	<u> </u>								

	④ Метод прижима	
D	Двойной прижим	
М	Модульный прижим Двойной прижим для тяжелого резания	
Р	Прижим рычагом	
S	Прижим винтом	

	③ Длина головки								
	LF								
Код	Высота								
F	80								
Н	100								
K	125								
М	150								
N	160								
Q	180								
R	200								
S	250								
Т	300								
U	350								

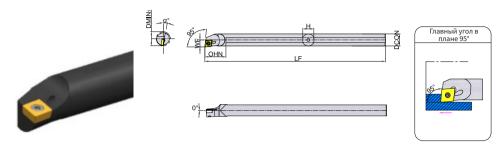
⑥ Гла	вный угол в плане
К	73
L	95°
F	910
U	93°
Q	Š
W	Š.


⑦ 3a	дний угс	л пластины
В	5°	5.
С	7°	۷.
D	15°	5.
E	20 °	70.
N	0°	0.
Р	11 °	77.

	® Направление
R	
L	

			9 длина режуц	цей кромки (мм)			
Вписанная окружность	<u>C</u>	D	R	S	<u></u>	<u></u>	<u>w</u>
6.35	06	07	-	06	11	11	04
9.525	09	11	-	09	16	16	06
12.7	12	15	-	12	22	-	08
15.875	16	-	-	15	-	-	-
19.05	19	-	-	19	-	-	-
25.4	25	-	-	25	-	-	-
32	-	-	32	-	-	-	-

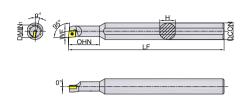
SCLCR/L



			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec	Нал	
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-SCLCR/L06	10	8	5.5	125	15	7	13	CC**0602**	SI60M025050-03510H	TT08PH	0.05	•	•
S10K-SCLCR/L06	12	10	6.5	125	15	9	12	CC**0602**	SI60M025050-03510H	TT08PH	0.08	•	•
S12M-SCLCR/L06	16	12	7.5	150	20	11	10	CC**0602**	SI60M025060-03510H	TT08PH	0.14	•	•
S12M-SCLCR/L09	16	12	8	150	18	11	12	CC**09T3**	SI60M040080-05812H	TT15PH	0.14	•	•
S16Q-SCLCR/L09	20	16	10	180	24	15	10	CC**09T3**	SI60M040080-05812H	TT15PH	0.29	•	•
S20R-SCLCR/L09	25	20	12	200	30	18	8	CC**09T3**	SI60M040080-05812H	TT15PH	0.5	•	•
S25S-SCLCR/L09	32	25	16	250	38	23	6	CC**09T3**	SI60M040100-05812H	TT15PH	0.98	•	•
S25S-SCLCR/L12	32	25	16	250	38	23	8	CC**1204**	SI60M050120-07012H	TT20PH	0.98	•	•

●В наличии ОДоступно по запросу

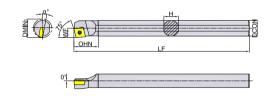
SCLCR/L (с внутренним охлаждением)



			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
A08K-SCLCR/L06	10	8	4.5	125	14	7	13	CC*T0602**	SI60M025050-03510D	TT08PD	0.05	•	•
A10K-SCLCR/L06	12	10	6	125	17	9	12	CC*T0602**	SI60M025050-03510D	TT08PD	0.08	•	•
A12M-SCLCR/L06	16	12	7	150	17	11	10	CC*T0602**	SI60M025050-03510D	TT08PD	0.14	•	•
A16Q-SCLCR/L09	20	16	9	180	27	15	10	CC*T09T3**	SI60M040080-05710D	TT15PD	0.29	•	•
A20Q-SCLCR/L09	25	20	11	180	28	18	8	CC*T09T3**	SI60M040080-05710D	TT15PD	0.5	•	•
A25R-SCLCR/L09	32	25	14	200	35	23	6	CC*T09T3**	SI60M040080-05710D	TT15PD	0.98	•	•
E08K-SCLCR/L06	10	8	5	125	8	7.5	13	CC*T0602**	SI60M025050-03510D	TT08PD	0.08	0	0
E10M-SCLCR/L06	12	10	6	150	14	9.5	12	CC*T0602**	SI60M025050-03510D	TT08PD	0.16	0	0
E12Q-SCLCR/L06	14	12	7	180	14	11	10	CC*T0602**	SI60M025050-03510D	TT08PD	0.28	0	0
E16R-SCLCR/L09	18	16	9	200	20	15	10	CC*T09T3**	SI60M040080-05710D	TT15PD	0.56	0	0
E20S-SCLCR/L09	22	20	11	250	26	19	8	CC*T09T3**	SI60M040080-05710D	TT15PD	1.1	0	0
E25T-SCLCR/L09	28	25	14	300	29	23	6	CC*T09T3**	SI60M040080-05710D	TT15PD	2.06	0	0

●В наличии ○Доступно по запросу

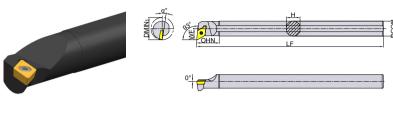
SCLCR/L-A16



Var agyana			Разме	еры (г	мм)			Комплек-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	ОНИ	Н	α°	тующая пластина		Þ	(кг)	R	L
S07M-SCLCR/L06-A16	9	16	4.25	150	18	15	15	CC**0602**	SI60M025050-03510H	TT08PH	0.22	•	0
S08M-SCLCR/L06-A16	10	16	5	150	25	15	13	CC**0602**	SI60M025050-03510H	TT08PH	0.22	•	0
S10M-SCLCR/L06-A16	13	16	6	150	26	15	12	CC**0602**	SI60M025050-03510H	TT08PH	0.22	•	•
S12M-SCLCR/L06-A16	15	16	7	150	28	15	10	CC**0602**	SI60M025060-03510H	TT08PH	0.22	•	0

●В наличии ○ Доступно по запросу

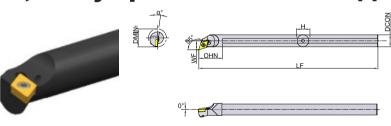
SCKCR/L



Voz ogvogo			Разм	еры (і	мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-SCKCR/L06	10	8	5.5	125	12	7	13	CC**0602**	SI60M025050-03510H	TT08PH	0.05	•	0
S10K-SCKCR/L06	12	10	6.5	125	20	9	12	CC**0602**	SI60M025050-03510H	TT08PH	0.08	•	0
S12M-SCKCR/L06	16	12	8	150	22	11	10	CC**0602**	SI60M025060-03510H	TT08PH	0.14	0	0
S12M-SCKCR/L09	16	12	8	150	23	11	12	CC**09T3**	SI60M040080-05812H	TT15PH	0.14	•	0
S16Q-SCKCR/L09	20	16	10	180	28	15	10	CC**09T3**	SI60M040080-05812H	TT15PH	0.29	•	0
S20R-SCKCR/L09	25	20	12	200	29	18	8	CC**09T3**	SI60M040080-05812H	TT15PH	0.5	0	0
S25S-SCKCR/L09	32	25	16	250	37	23	6	CC**09T3**	SI60M040100-05812H	TT15PH	0.98	•	0

●В наличии ○ Доступно по запросу

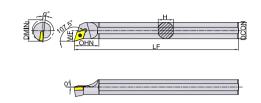
SDUCR/L



Va = 00,4000			Разм	еры (і	мм)			Комплектую-	Винт	Ключ	Bec	На. чи	ли- 1e
Код заказа	DMIN1	DCON	WF	LF	LF OHN H	Н	α°	щая пластина		Þ	(кг)	R	L
S10K-SDUCR/L07	12	10	7	125	15	9	10	DC**0702**	SI60M025050-03510H	TT08PH	0.08	•	•
S12M-SDUCR/L07	16	12	9	150	22	11	8	DC**0702**	SI60M025060-03510H	TT08PH	0.14	•	•
S16Q-SDUCR/L07	20	16	11	180	27	15	6	DC**0702**	SI60M025060-03510H	TT08PH	0.29	•	•
S16Q-SDUCR/L11	20	16	11	180	28	15	6	DC**11T3**	SI60M040080-05812H	TT15PH	0.29	•	•
S20R-SDUCR/L11	25	20	13	200	30	18	6	DC**11T3**	SI60M040080-05812H	TT15PH	0.5	•	•
S25S-SDUCR/L11	32	25	16	250	38	23	4	DC**11T3**	SI60M040100-05812H	TT15PH	0.98	•	•

●В наличии ○ Доступно по запросу

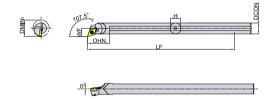
SDUCR/L (с внутренним охлаждением)



W			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec	На. чі	ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
A10K-SDUCR/L07	13	10	7.7	125	15	9	10	DC*T0702**	SI60M025050-03510D	TT08PD	0.08	•	•
A12M-SDUCR/L07	16	12	8.5	150	22	11	8	DC*T0702**	SI60M025050-03510D	TT08PD	0.14	•	•
A16Q-SDUCR/L07	20	16	11	180	27	15	6	DC*T0702**	SI60M025050-03510D	TT08PD	0.29	•	•
A20Q-SDUCR/L11	25	20	14.5	180	30	18	6	DC*T11T3**	SI60M040080-05710D	TT15PD	0.5	•	•
A25R-SDUCR/L11	32	25	18.5	200	35	23	6	DC*T11T3**	SI60M040080-05710D	TT15PD	0.98	•	•
E10M-SDUCR/L07	13	10	7	150	14	9.5	10	DC*T0702**	SI60M025050-03510D	TT08PD	0.16	0	0
E12Q-SDUCR/L07	16	12	9	180	14	11	8	DC*T0702**	SI60M025050-03510D	TT08PD	0.28	0	0
E16R-SDUCR/L07	20	16	11	200	20	15	6	DC*T0702**	SI60M025050-03510D	TT08PD	0.56	0	0

●В наличии О Доступно по запросу

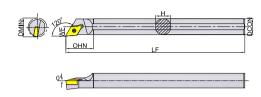
SDQCR/L



Var agyana		ı	Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1 DCON WF LF OHN H	Н	α°	щая пластина		Þ	(кг)	R	L				
S10K-SDQCR/L07	12	10	7	125	20	9	10	DC**0702**	SI60M025050-03510H	TT08PH	0.08	•	0
S12M-SDQCR/L07	16	12	9	150	20	11	8	DC**0702**	SI60M025060-03510H	TT08PH	0.14	•	0
S16Q-SDQCR/L07	20	16	11	180	25	15	6	DC**0702**	SI60M025060-03510H	TT08PH	0.29	•	0
S16Q-SDQCR/L11	20	16	11	180	24	15	6	DC**11T3**	SI60M040080-05812H	TT15PH	0.29	•	•
S20R-SDQCR/L11	25	20	13	200	32	19	6	DC**11T3**	SI60M040080-05812H	TT15PH	0.5	•	0
S25S-SDQCR/L11	32	25	16	250	33	23	4	DC**11T3**	SI60M040100-05812H	TT15PH	0.98	•	•

●В наличии О Доступно по запросу

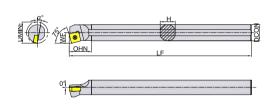
SDQCR/L (с внутренним охлаждением)



1/25 224222			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		(кг)	R	L	
A10K-SDQCR/L07	13	10	7	125	20	9	10	DC*T0702**	SI60M025050-03510D	TT08PD	0.08	•	0
A12M-SDQCR/L07	16	12	9	150	22	11	8	DC*T0702**	SI60M025050-03510D	TT08PD	0.14	•	0
A16Q-SDQCR/L07	20	16	11	180	27	15	6	DC*T0702**	SI60M025050-03510D	TT08PD	0.29	•	0
A20Q-SDQCR/L11	25	20	13	180	35	18	6	DC*T11T3**	SI60M040080-05710D	TT15PD	0.5	•	0
A25R-SDQCR/L11	32	25	17	200	38	23	4	DC*T11T3**	SI60M040080-05710D	TT15PD	0.98	•	•

●В наличии О Доступно по запросу

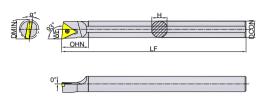
SDXCR/L



Vод ээкэээ			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec	На. чі	ли- 1e
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-SDXCR/L07	10	8	5.5	125	18	7	12	DC**0702**	SI60M025050-03510H	TT08PH	0.05	•	0
S10K-SDXCR/L07	12	10	6.5	125	18	9	10	DC**0702**	SI60M025050-03510H	TT08PH	0.08	•	0
S12M-SDXCR/L07	16	12	8	150	22	11	8	DC**0702**	SI60M025060-03510H	TT08PH	0.14	•	0
S16Q-SDXCR/L07	20	16	10	180	32	15	6	DC**0702**	SI60M040100-05812H	TT08PH	0.29	•	0
S20R-SDXCR/L11	25	20	12	200	38	18	6	DC**11T3**	SI60M040080-05812H	TT15PH	0.5	•	•
S25S-SDXCR/L11	32	25	14	250	45	23	4	DC**11T3**	SI60M040100-05812H	TT15PH	0.98	•	0

●В наличии О Доступно по запросу

SSKCR/L



		I	Разм	еры (мм)			Комплектую-					ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S12M-SSKCR/L09	16	12	9	150	22	11	10	SC**09T3**	SI60M040080-05812H	TT15PH	0.14	0	0
S16Q-SSKCR/L09	20	16	11	180	29	15	10	SC**09T3**	SI60M040080-05812H	TT15PH	0.29	•	0
S20R-SSKCR/L09	25	20	13	200	29	18	8	SC**09T3**	SI60M040080-05812H	TT15PH	0.5	•	0
S25S-SSKCR/L12	32	25	17	250	38	23	6	SC**1204**	SI60M050120-07012H	TT20PH	0.98	0	0

●В наличии ○ Доступно по запросу

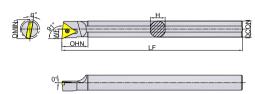
STUCR/L



Van aguaga			Разм	еры (і	мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-STUCR/L09	10	8	5.5	125	15	7	15	TC**0902**	SI60M022040-03008H	TT06PH	0.05	•	0
S10K-STUCR/L09	12	10	6.5	125	15	9	13	TC**0902**	SI60M022040-03008H	TT06PH	0.08	•	0
S10K-STUCR/L11	12	10	6.5	125	15	9	12	TC**1102**	SI60M025050-03510H	TT08PH	0.08	•	0
S12M-STUCR/L11	16	12	8	150	21	11	10	TC**1102**	SI60M025060-03510H	TT08PH	0.14	•	0
S16Q-STUCR/L11	20	16	10	180	27	15	8	TC**1102**	SI60M025060-03510H	TT08PH	0.29	•	0
S20R-STUCR/L11	25	20	12	200	27	18	6	TC**1102**	SI60M025060-03510H	TT08PH	0.5	•	
S20R-STUCR/L16	25	20	12	200	27	18	4	TC**16T3**	SI60M040080-05812H	TT15PH	0.5	•	0
S25S-STUCR/L16	32	25	16	250	38	23	6	TC**16T3**	SI60M040100-05812H	TT15PH	0.98	•	

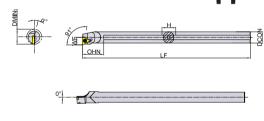
●В наличии ОДоступно по запросу

STWCR/L



Var agyana			Разм	еры (і	мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-STWCR/L09	10	8	6	125	16	7	15	TC**0902**	SI60M022040-03008H	TT06PH	0.05	•	0
S10K-STWCR/L11	12	10	8	125	20	9	10	TC**1102**	SI60M025050-03510H	TT08PH	0.08	•	0
S12M-STWCR/L11	16	12	9	150	20	11	8	TC**1102**	SI60M025060-03510H	TT08PH	0.14	•	0
S16Q-STWCR/L11	20	16	11	180	27	15	6	TC**1102**	SI60M025060-03510H	TT08PH	0.29	0	0
S20R-STWCR11	25	20	13	200	30	18	4	TC**1102**	SI60M025060-03510H	TT08PH	0.5	0	
S20R-STWCR/L16	25	20	15	200	32	18	8	TC**16T3**	SI60M040080-05812H	TT15PH	0.5	0	0
S25S-STWCR/L16	32	25	17	250	44	23	6	TC**16T3**	SI60M040100-05812H	TT15PH	0.98	•	0

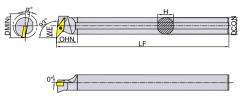
STFCR/L

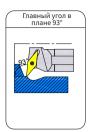


Man aguaga			Разм	еры (і	мм)			Комплектую-	Винт	Ключ	Bec		ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-STFCR/L09	10	8	5.5	125	15	7	15	TC**0902**	SI60M022040-03008H	TT06PH	0.05	•	0
S10K-STFCR/L09	12	10	6.5	125	15	9	10	TC**0902**	SI60M022040-03008H	TT06PH	0.08	•	•
S12M-STFCR/L09	16	12	8	150	20	11	8	TC**0902**	SI60M022060-03008H	TT06PH	0.14	•	0
S12M-STFCR/L11	16	12	8	150	25	11	6	TC**1102**	SI60M025060-03510H	TT08PH	0.14	•	•
S16Q-STFCR/L11	20	16	10	180	27	15	4	TC**1102**	SI60M025060-03510H	TT08PH	0.29	•	•
S20R-STFCR/L11	25	20	12	200	27	18	8	TC**1102**	SI60M025060-03510H	TT08PH	0.5	•	•
S20R-STFCR/L16	25	20	12	200	27	18	6	TC**16T3**	SI60M040080-05812H	TT15PH	0.5	•	0
S25S-STFCR/L16	32	25	16	250	40	23		TC**16T3**	SI60M040100-05812H	TT15PH	0.98	•	•

●В наличии ○ Доступно по запросу

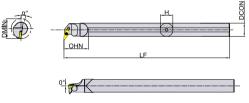
STFCR/L (с внутренним охлаждением)




Vод ээхэээ			Разм	еры (і	мм)			Комплектую- Винт Ключ Вес (кг)					ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
A10K-STFCR/L09	12	10	6.8	125	10	9	13	TC*T0902**	SI60M022060-03008D	TT06PD	0.08	•	•
A12M-STFCR/L09	16	12	8	150	10	11	10	TC*T0902**	SI60M022060-03008D	TT06PD	0.14	•	0
S12M-STFCR/L1102	14	12	6.5	150	25	11	10	TC*T1102**	SI60M022050-03008D	TT08PD	0.14	•	•
A16Q-STFCR/L1102	18	16	9	180	25	15	8	TC**1102**	SI60M022050-03008D	TT08PD	0.29	•	•
A20Q-STFCR/L1102	25	20	11	180	25	18	6	TC**1102**	SI60M022050-03008D	TT08PD	0.5	•	•
A25R-STFCR/L16	32	25	17	200	40	23	6	TC*T16T3**	SI60M040080-05710D	TT15PD	0.98	•	•

●В наличии ○ Доступно по запросу

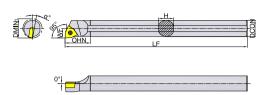
SVUCR/L



Van aavaa			Разм	еры (мм)			Комплектую-	Bec		ли- ие		
Код заказа	DMIN1	DCON	WF	LF	ОНИ	Н	α°	щая пластина		Þ	(кг)	R	L
S16Q-SVUCR/L11	20	16	12	180	25	15	10	VC**1103**	SI60M025060-03510H	TT08PH	0.29	•	0
S20R-SVUCR/L11	25	20	16	200	26	18	8	VC**1103**	SI60M025060-03510H	TT08PH	0.5	•	•
S25S-SVUCR/L16	33	25	20	250	36	23	8	VC**1604**	SI60M040100-05812H	TT15PH	0.98	•	•

●В наличии О Доступно по запросу

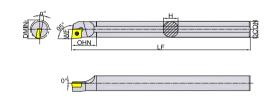
SVUCR/L (с внутренним охлаждением)



Man aguaga			Разм	еры (мм)			Комплектую-					ли- ие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
A16Q-SVUCR/L11	22	16	13.5	180	24	15	10	VC*T1103**	SI60M025050-03510D	TT08PD	0.29	•	0
A20Q-SVUCR/L16	31	20	19	180	32	19	8	VC*T1604**	SI60M040080-05710D	TT15PD	0.5	•	•
A25R-SVUCR/L16	35	25	20	200	32	23	8	VC*T1604**	SI60M040080-05710D	TT15PD	0.98	•	•

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

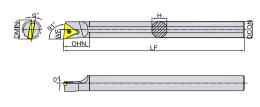
SWLCR/L



		ı	Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec	Нали	чие
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S12M-SWLCR/L06	16	12	8	150	20	11	12	WC**06T3**	SI60M040080-05812H	TT15PH	0.14	•	•
S16Q-SWLCR/L06	20	16	10	180	25	14.8	10	WC**06T3**	SI60M040080-05812H	TT15PH	0.29	•	•
S20R-SWLCR/L06	25	20	12	200	28	18.4	8	WC**06T3**	SI60M040080-05812H	TT15PH	0.5	•	•
S25S-SWLCR/L06	32	25	16	250	40	23.4	6	WC**06T3**	SI60M040100-05812H	TT15PH	0.98	•	•

●В наличии ○ Доступно по запросу

SCLPR/L



Va= 201/202			Разм	еры (мм)			Комплектую-	Винт	Ключ	Bec	Нал чи	
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R	L
S08K-SCLPR/L06	10	8	5.5	125	15	7	13	CP**0602**	SI60M025050-03510H	TT08PH	0.05	•	•
S10K-SCLPR/L06	12	10	6.5	125	15	9	12	CP**0602**	SI60M025050-03510H	TT08PH	0.08	•	•
S12M-SCLPR/L06	16	12	8	150	20	11	10	CP**0602**	SI60M025050-03510H	TT08PH	0.14	•	•
S12M-SCLPR/L09	16	12	8	150	26	11	12	CP**09T3**	SI60M040080-05812H	TT15PH	0.14	•	•
S16Q-SCLPR/L09	20	16	10	180	27	15	10	CP**09T3**	SI60M040080-05812H	TT15PH	0.29	•	•
S20R-SCLPR/L09	25	20	12	200	29	18	8	CP**09T3**	SI60M040080-05812H	TT15PH	0.5	•	0
S25S-SCLPR/L09	32	25	16	250	38	23	6	CP**09T3**	SI60M040100-05812H	TT15PH	0.98	•	•

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

STFPR/L

Иод оругоо			Разм	еры (мм)			Комплектую- Винт Ключ Вес				
Код заказа	DMIN1	DCON	WF	LF	OHN	Н	α°	щая пластина		Þ	(кг)	R
S10K-STFPR1102	12	10	6.5	125	16	9	12	TP**1102**	SI60M025050-03510H	TT08PH	0.08	•
S12M-STFPR1102	16	12	8	150	25	11	10	TP**1102**	SI60M025050-03510H	TT08PH	0.14	•
S16Q-STFPR1102	20	16	10	180	27	15	8	TP**1102**	SI60M025060-03510H	TT08PH	0.29	•
S20R-STFPR1102	25	20	12	200	30	18	6	TP**1102**	SI60M025060-03510H	TT08PH	0.5	0
S20R-STFPR16T3	25	20	12	200	30	18	4	TP**16T3**	SI60M040080-05812H	TT15PH	0.5	•
S25S-STFPR16T3	32	25	16	250	40	23	6	TP**16T3**	SI60M040100-05812H	TT15PH	0.98	0

●В наличии О Доступно по запросу

G

Режущие инструменты для отрезки и обработки канавок

для отрезки и обработки канавок

Правила обозначения моделей режущих пластин для отрезки и обработки канавок

. Режущие пластины серии GT

GT D 300 E 020 R 06-MC

① Общее наименование серии

GT

② Количество кромокS = Одна кромкаD = Две кромки

③ Ширина резания

Ширина резания < 10 мм
Опустить первую цифру,
300 = 3.0 мм

Ширина резания ≥ 10 мм
Не опустить, 1000 = 10.0 мм

⑤ Радиус закругления вершины020=0.20 мм

⑥ Направление пластиныR = ПравоеL = Левое□ = Среднее расположение

🤊 Угол подъема
06=6°
15=15°
□=0°

	значение адаптера щего инструмента
Пла- стина	Комплектующая державка
В	В
С	С
D	D (первый выбор), С
Е	E (первый выбор), D, C
F	F
G	G (первый выбор), F
Н	Н (первый выбор), G, F
J	J

8 Геометр	ия канавки
Первая буква	Вторая буква
F= Малая подача	С= Отрезка
М = Средняя подача	T = Токарная обработка
R = Большая подача	G = Обработка канавок
O = Специальная оптимизация	R = Профильная обработка

Правила обозначения моделей режущих пластин для отрезки и обработки канавок . Режущие пластины серии GK

GK 02

① Общее наименование серии GK

② Количество кромок	
S = Одна кромка	
D = Две кромки	

③ Ширина резания	
30=3.0 мм	
40=4.0 мм	

Ф Радиус закругления вершины
02=0.2 мм
04=0.4 мм
20=2.0 мм

⑤ Направление пластины
R = Правое
L = Левое
□ = Среднее расположение

15=15°
□=0°

🤊 Геометр	ия канавки
Первая буква	Вторая буква
F= Малая подача	С= Отрезка
М = Средняя подача	T = Токарная обработка
R = Большая подача	G = Обработка канавок
O = Специальная оптимизация	R = Профильная обработка

Правила обозначения моделей режущих пластин для отрезки и обработки канавок

Режущие пластины серии GB

GB R 4 100 R - 050

(1) (2) (3) (4) (5) (6)

① Общее наименование серии GB ② Тип пластиныR = Круглая пластина□ = С квадратной головкой

③ Размер пластины3 IC=9.525 мм4 IC=12.7 мм

④ Ширина резания
100=1.00 мм

⑤ Направление пластины

R = Правое


L = Левое

© Радиус закругления вершины050=0.5 мм

румен в пиструмен в для отрезки и обработки канавок

Правила обозначения моделей режущих пластин для отрезки и обработки канавок

Режущие пластины серии GN

- ① Общее наименование серии

 GN
- ② Тип обработкиG = Обработка канавокR = Профильная обработка
- ③ Дополнительная информацияD = Глубокая обработка

канавок

④ Дополнительная информацияР = Положительный передний угол□ = Без переднего угла

- ⑤ Толщина пластины2=3.81 мм3=4.95 мм
- ⑥ Ширина резанияМетрическая система: M150=1.5 ммБританская система:

125=0.125inch

Паправление пластины R = Правое L = Левое

Правила обозначения моделей режущих пластин для отрезки и обработки канавок

Режущие пластины серии GST

GSTS A 2 R 150 R 16-U

① Общее наименование серии
GSTC
GSTS (тонкий)

② F	Размер пластины
Спец	ифично для серии GSTS
А	Высота пластины = 8.7 мм
В	Высота пластины = 9.5 мм

③ Толщина пластины
2=2.2 мм
3=3.0 мм
4=4.0 мм

④ Направление пластины
R = Правое
L = Левое

⑤ Ширина резания	
150=1.5 мм	

⑥ Направление угла подъема
R = Правое
L = Левое
N = Без смещения

🤊 Угол подъема
16=16°
20=20°

® Геометрия канавки		
Код	Тех. характе- ристики	GAN
U	GSTC3*N-U	15°
	GSTSA*-U	
	GSTC4*-U	20°
	GSTSB*-U	
	GSTC3*R16-U	24°
Т	GSTC*-T	12°
N	GSTC*-N	0.0
	GSTC*R20-N	U

Правила обозначения моделей режущих державок для отрезки и обработки канавок

Державки серии GT

GT E P R 2525 M 45-H 25 D65-S

① Общее наименование серии

GT

② Тип обработки

Е = Проходная обработка

I= Расточная обработка

F = обработка торцевой поверхности

③ Внешний вид державки

U = Канавка для выхода шлифовального круга

Р = Вертикальное

□ = Прямолинейные

4 Направление режущего . инструмента

R = Правое

L = Левое

N = Нейтральное

® Код адаптера режущего

⑤ Размер головки

Державка для проходной обработки: . Высота * Ширина

Державка для расточной обработки: Мин. диаметр обработки * диаметр головки

9 Макс. глубина резания

Типичный корпус ин-	25: CDX=25 мм
струмента Специальные	
тела инстру-	
ментов для	D16:CUTDIA
автоматиче-	=16 мм
ских токар-	
ных станков	

10 Мин. диаметр первого резания Специфично для

подрезной обработки D65:DAXIN=65 мм

⑥ Длина державки	
Код	Длина
F	85 mm
Н	100 mm
J	110 mm
JX	120 mm
K	125 mm
М	150 mm
Q	180 mm
R	200 mm
S	250 mm

300 mm

350 mm

Т

U

🤊 Угол головки
Специфично для U-образной державки
45=45°
75=75°

🕦 Дополнительная	
информация	

S = C криволинейным усилением

С = С охлаждением при высоком давлении

SC = С криволинейным усилением и охлаждением при высоком давлении

□ = Без криволинейного усиления

инструмента	
Дер- жавка	Комплектующая пластина
В	В
С	С (первый выбор), D, E
D	D (первый выбор), Е
Е	E
F	F (первый выбор), G, H
G	G (первый выбор), Н
Н	Н
J	J

Правила обозначения моделей режущих державок для отрезки и обработки канавок

Державки серии GK

GK F P R 2525-4 T25 D65-S

① Общее наименование серии

GΚ

② Тип обработки

Е = Проходная обработка

I= Расточная обработка

F = обработка торцевой поверхности

③ Внешний вид державки

U = Канавка для выхода шлифовального круга

Р = Вертикальное

□ = Прямолинейные

④ Направление режущего инструмента

R = Правое

L = Левое

N = Нейтральное

⑤ Размер головки

Державка для проходной обработки: . Высота * Ширина Державка для расточной

обработки: Мин. диаметр обработки * диаметр головки

- 9 Дополнительная информация
- S = C криволинейным усилением
- □ = Без криволинейного усиления

⑥ Ширина резания пластины

4=4.0 мм

🤊 Макс. глубина резания

T25: CDX=25 MM

® Мин. диаметр первого резания

Специфично для подрезной обработки

D65:DAXIN=65 мм

Правила обозначения моделей режущих державок для отрезки и обработки канавок

Державки серии GB

GB E R 2525 M 4 15

① Общее наименование серии

GB

② Тип обработкиE = Проходная обработкаI= Расточная обработка

③ Направление инструментаR = ПравоеL = Левое

Ф Размер головки
 Державка для проходной обработки:
 Высота * Ширина
 Державка для расточной обработки:
 Мин. диаметр обработки
 * диаметр головки

⑤ Длина державки	
Код	Длина
K	125 mm
М	150 mm
Q	180 mm
R	200 mm

⑥ Размер пластины	
3	IC=9.525 мм
4	IC=12.7 мм

Подходящий диапазон ширины пластин	
Специфично для державки GB4 для проходной обработки	
15	1.0≤W<2.5
25	2.5≤W<3.3
35	3.3≤W

Правила обозначения моделей режущих державок для отрезки и обработки канавок

. Державки серии GN

2525 (1) (2) (3)

① Общее наименование серии GN

② Тип обработки S = Прямолинейная Проходная Е= Вертикальные обработка R = Канавка для выхода шлифовального круга А = Вертикальная Расточная с внутренним обработка охлаждением

③ Направление инструмента R = Правое L = Левое

4 Размер головки Державка для проходной обработки: Высота * Ширина Державка для расточной обработки: Диаметр головки

⑤ Длина державки Код Длина D 60 mm Ε 70 mm F 80 mm Н 100 mm J 110 mm Κ 125 mm 150 mm М Р 170 mm Q 180 mm R 200 mm **⑥** Толщина пластины 2=3.81 мм 3=4.95 мм

Примечания: ① При выборе державок GNE/GNA, правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок. ② Серия GN — это бывшая серия G-NOTCH.

Правила обозначения моделей режущих державок для отрезки и обработки канавок

Державки серии GST

GSTS R 1212 JK A 2-RS

① Общее наименование серии
GST
GSTS (тонкий)

② Направление пластины
R = Правое
L = Левое
N = Нейтральное

③ Размер головки
Державка для проходной обработки: Высота *
Ширина

④ Длина державки								
Код	Длина							
JK	120 mm							

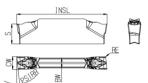
⑤ Размер пластины									
Специфично для серии GSTS									
Α	Высота пластины = 8.7 мм								
В	Высота пластины = 9.5 мм								

⑥ Толщина пластины
2=2.2 мм
3=3.0 мм
4=4.0 мм

⑦ Дополнительная информацияRS = Державка для вторичного шпинделя

Ведомость режущих пластин для отрезки и обработки канавок

Общее наимено- вание серии	Способ обработки	Внешний вид	Геометрия канавки	Применение	Диапазон шири- ны пластины	Стр.
			FC	Отрезка с малой подачей	2.00-4.00 (MM)	P204
	Oznovia		МС	Отрезка со сред- ней подачей	1.50-5.00 (мм)	P205
	Отрезка		RC	Отрезка с боль- шой подачей	2.00-6.00 (мм)	P206
			OC	Специально оп- тимизированная отрезка	2.00 (мм)	P207
	Обработка		FG	Обработка канавок с малой подачей	1.50-8.00 (мм)	P208-P210
GT	канавок		MG	Обработка канавок со средней подачей	2.00-8.00 (мм)	P211
	Токарная обработка		FT	Токарная обра- ботка с малой подачей	1.50-8.00 (мм)	P212
			МТ	Токарная обра- ботка со средней подачей	2.00-8.00 (мм)	P213
			ОТ	Специально оп- тимизированная токарная обра- ботка	3.00-5.00 (мм)	P214
	Профильная		MR	Профильная обработка со средней пода- чей	2.00-8.00 (мм)	P215
	обработка		OR	Специально оптимизирован- ная профильная обработка	2.00-8.00 (мм)	P216
GK.	Токарная обработка		МТ	Токарная обра- ботка со средней подачей	2.00-8.00 (мм)	P217
GK	Профильная обработка		MR	Профильная обработка со средней пода- чей	2.00-8.00 (мм)	P218


Для отрезки и санавок

Ведомость режущих пластин для отрезки и обработки канавок

Общее наимено- вание серии	Способ обработки	Внешний вид	Геометрия канавки	Применение	Диапазон шири- ны пластины	Стр.
GB -	Обработка канавок		GB	Прецизионная обработка кана- вок	0.33-4.30 (мм)	P219-P222
	Профильная обработка		GBR	Прецизионная профильная обработка	1.00-4.00 (мм)	P223
	Обработка		GNGP	Прецизионная обработка кана- вок	0.50-4.80 (мм)	P224-P225
GN	канавок		GNGDP	Прецизионная глубокая обра- ботка канавок	1.50-4.80 (мм)	P226
	Профильная обработка		GNR	Прецизионная профильная обработка	1.00-3.18 (мм)	P227
	Отрезка	0	U	Отрезка мелких деталей (острая режущая кром- ка)	0.50-2.00 (мм)	P228-P229
GSTC		0	Т	Отрезка мелких деталей (уси- ленная режущая кромка)	1.00-2.00 (мм)	P230
		0	N	Отрезка мелких деталей (острая вершина без канавки)	0.50-2.00 (мм)	P231-P232
GSTS	Отрезка	0	U	Отрезка мел- ких деталей — для вторич- ного шпинделя (острая режущая кромка)	1.50-2.00 (мм)	P233

FC

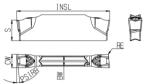
Пластины для отрезки с низкой подачей

На рис. показана правая

★ Пер	P	☆	*	☆	
вый вы	M		☆	*	
ĸ Первый выбор 🖟 Резерв	K		*		
Резерв	S		*	☆	

Код заказа		Код	Размеры (мм)							Твердые сплавы с покрытием					
		адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	PSIR ^R / _L	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
	GTD200C015-FC	С	2.00	0.15	20.0	1.60	4.45	0°	•		•	•			
	GTD250D015-FC	D	2.50	0.15	20.0	2.00	4.52	0°	•		•	•			
	GTD300E015-FC	E	3.00	0.15	20.0	2.30	4.58	0°	•		•	•			
	GTD400F015-FC	F	4.00	0.15	25.0	3.20	4.50	0°	•		•	•			
	GTD200C015R06-FC	- с	2.00	0.15	21.0	1.60	4.45	6°	•		•	•			
	GTD200C015L06-FC		2.00	0.15	21.0	1.60	4.45	6°	•		•	•			
	GTD250D015R06-FC	D	2.50	0.15	21.0	2.00	4.52	6°	•		•	•			
	GTD250D015L06-FC	U	2.50	0.15	21.0	2.00	4.52	6°			•				
	GTD300E015R06-FC	. Е	3.00	0.15	21.0	2.30	4.58	6°	•		•	•			
	GTD300E015L06-FC		3.00	0.15	21.0	2.30	4.58	6°	•		•	•			
	GTD400F015R06-FC	F	4.00	0.15	26.0	3.20	4.50	6°	•		•	•			
	GTD400F015L06-FC	٢	4.00	0.15	26.0	3.20	4.50	6°			•				

[◎] Комплектующие державки указаны на стр. 234-243


[●]В наличии ○ Доступно по запросу

для отрезки и обработки канавок

Пластины для отрезки и обработки канавок — серия GT

MC

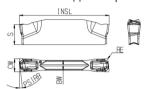
Пластины для отрезки со средней подачей

Нa	nuc	показана	правад
Iu	pric.	показапа	правал

i ep	P	☆	*	☆	
выи вы	M		☆	*	
🛨 Первый выбор 🦟 Резерв	K		*		
гезерв	S		*	☆	

на рис. показана правая								age S			×	W			
		Код (мм)							Твер	Твердые сплавы с покрытием					
Код заказа		адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	PSIR ^R / _L	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
	GTD150B020-MC	В	1.50	0.20	14.0	1.26	4.21	0 °	•		•	•			
	GTD200C020-MC	С	2.00	0.20	20.0	1.60	4.45	0°	•		•	•			
	GTD250D020-MC	D	2.50	0.20	20.0	2.00	4.53	0°	•		•	•			
	GTD300E020-MC	Е	3.00	0.20	20.0	2.30	4.55	0°	•		•	•			
	GTD400F020-MC	F	4.00	0.20	25.0	3.20	4.50	0 °	•		•	•			
	GTD500G020-MC	G	5.00	0.20	25.0	4.20	4.58	0°	•		•	•			
	GTD200C020R06-MC		2.00	0.20	20.4	1.60	4.45	6°	•		•	•			
	GTD200C020L06-MC		2.00	0.20	20.4	1.60	4.45	6°	•		•	•			
	GTD200C002L15-MC	- C -	2.00	0.02	21.5	1.60	4.47	15 °			•	0			
	GTD200C002R15-MC		2.00	0.02	21.5	1.60	4.47	15°			•	0			
	GTD200C020R15-MC		2.00	0.20	20.8	1.60	4.44	15°			•	•			
	GTD200C020L15-MC		2.00	0.20	20.8	1.60	4.44	15°			•	•			
A	GTD250D020R06-MC	D	2.50	0.20	20.5	2.00	4.53	6°	•		•	•			
	GTD250D020L06-MC	D	2.50	0.20	20.5	2.00	4.53	6°	•		•	•			
	GTD300E020R06-MC		3.00	0.20	20.7	2.30	4.58	6°	•		•	•			
	GTD300E020L06-MC		3.00	0.20	20.7	2.30	4.58	6°	•		•	•			
	GTD300E002L15-MC	- E	3.00	0.02	21.6	2.30	4.61	15°			•	•			
	GTD300E002R15-MC	_	3.00	0.02	21.6	2.30	4.61	15°			•	•			
	GTD300E020L15-MC		3.00	0.20	20.9	2.30	4.58	15°			•	•			
	GTD300E020R15-MC		3.00	0.20	20.9	2.30	4.58	15°			•	•			
	GTD400F020R06-MC	F	4.00	0.20	25.6	3.20	4.50	6°	•		•	•			
	GTD400F020L06-MC		4.00	0.20	25.6	3.20	4.50	6°	•		•	•			
	GTD500G020R06-MC	- G	5.00	0.20	25.9	4.20	4.58	6°	•		•				
	GTD500G020L06-MC	G	5.00	0.20	25.9	4.20	4.58	6°	•		•				

 $[\]odot$ Комплектующие державки указаны на стр. 234-243 Примечания: RE=0.02 мм, допуск размеров материала ± 0.01 мм


●В наличии ○ Доступно по запросу

Э Режущие инструмент для отрезки и

Пластины для отрезки и обработки канавок — серия GT

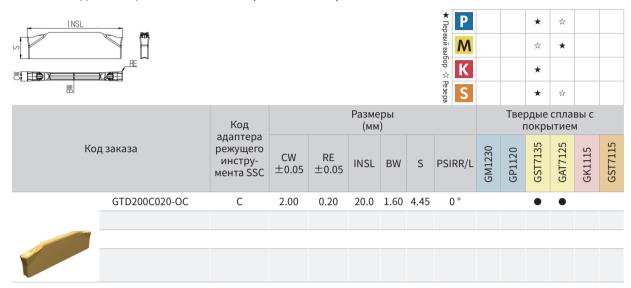
RC

Пластины для отрезки с большой подачей

★ Пер	P	☆		*	☆		
🛨 Первый выбор 🖟 Резерв	M			☆	*		
6op ☆	K			*			
Резерв	S			*	☆		
		Tpop	TI 10 6			olanı i	T14014

		Код	(****)								Твердые сплавы с покрытием							
Ко	д заказа	адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	PSIR ^R / _L	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115				
	GTD200C020-RC	С	2.00	0.20	20.0	1.60	4.45	0 °	•		•	•						
	GTD250D030-RC	D	2.50	0.30	20.0	2.00	4.52	0 °	•		•	•						
	GTD300E030-RC	E	3.00	0.30	20.0	2.30	4.58	0 °	•		•	•						
	GTD400F030-RC	F	4.00	0.30	25.0	3.20	4.50	0°	•		•	•						
	GTD500G040-RC	G	5.00	0.40	25.0	4.20	4.58	0 °	•		•	•						
	GTD600H040-RC	Н	6.00	0.40	25.0	5.20	4.67	0 °	•		•	•						
	GTD200C020R06-RC	C	2.00	0.20	20.6	1.60	4.45	6°	•		•	•						
	GTD200C020L06-RC	C	2.00	0.20	20.6	1.60	4.45	6°	•		•	•						
3	GTD250D030R06-RC	D	2.50	0.30	20.6	2.00	4.54	6°	•		•	•						
	GTD250D030L06-RC	D	2.50	0.30	20.6	2.00	4.54	6°	•		•	•						
	GTD300E030R06-RC	Е	3.00	0.30	20.7	2.30	4.58	6°	•		•	•						
	GTD300E030L06-RC	E	3.00	0.30	20.7	2.30	4.58	6°	•		•	•						
	GTD400F030R06-RC	F	4.00	0.30	25.9	3.20	4.50	6°	•		•	•						
	GTD400F030L06-RC	F	4.00	0.30	25.9	3.20	4.50	6°	•		•							
	GTD500G040R06-RC	G	5.00	0.40	25.9	4.20	4.60	6°	•		•							
	GTD500G040L06-RC		5.00	0.40	25.9	4.20	4.60	6°	•		•							

[◎] Комплектующие державки указаны на стр. 234-243

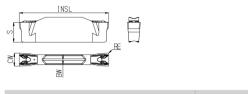

[●]В наличии ○ Доступно по запросу

для отрезки и

Пластины для отрезки и обработки канавок — серия GT

OC

Пластины для специально оптимизированной отрезки



◎ Комплектующие державки указаны на стр. 234-243

●В наличии ○ Доступно по запросу

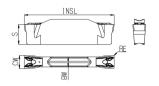
FG

Пластины для обработки канавок с низкой подачей

										*			\$ \$		
		Код адаптера		Pa	азмеры (мм)			Твердые сплавы с покрытием							
Код	заказа	режущего инструмента SSC	CW ±0.02	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115		
	GTD150B010-FG	В	1.50	0.10	14.8	1.15	4.21			•			•		
	GTD198C020-FG		1.98	0.20	20.7	1.60	4.45			•					
	GTD200C020-FG	6	2.00	0.20	20.7	1.60	4.45	•		•			•		
	GTD200C040-FG	С	2.00	0.40	20.7	1.60	4.45			•			•		
	GTD224C020-FG		2.24	0.20	20.7	1.60	4.45			0			0		
	GTD239D020-FG	2.3 2.3 D 2.4 2.6	2.39	0.20	20.7	2.00	4.53			•			•		
	GTD239D040-FG		2.39	0.40	20.7	2.00	4.53			•			•		
	GTD246D030-FG		2.46	0.30	20.7	2.00	4.53			0			0		
	GTD267D020-FG		2.67	0.20	20.7	2.00	4.53			0					
	GTD279D030-FG		2.79	0.30	20.7	2.00	4.53			•			•		
	GTD300E020-FG		3.00	0.20	20.7	2.30	4.58	•		•			•		
	GTD300E030-FG	3.	3.00	0.30	20.7	2.30	4.58			•			•		
	GTD300E040-FG		3.00	0.40	20.7	2.30	4.58			•			•		
	GTD310E020-FG	E	3.10	0.20	20.7	2.30	4.58			•					
	GTD318E020-FG		3.18	0.20	20.7	2.30	4.58			•			•		
	GTD318E040-FG		3.18	0.40	20.7	2.30	4.58			•					
	GTD318E080-FG		3.18	0.80	20.7	2.30	4.58			•			•		
	GTD361E030-FG		3.61	0.30	20.7	2.30	4.58			•			•		
	GTD396F020-FG		3.96	0.20	25.7	3.20	4.50			0			0		
	GTD396F040-FG		3.96	0.40	25.7	3.20	4.50			0					
	GTD396F080-FG	F	3.96	0.80	25.7	3.20	4.50			0			0		
	GTD400F020-FG		4.00	0.20	25.7	3.20	4.50	•		•			•		
	GTD400F040-FG		4.00	0.40	25.7	3.20	4.50			•			•		
GTD452F020-FG			4.52	0.20	25.7	3.20	4.50			•					

[◎] Комплектующие державки указаны на стр. 234-243

☆


☆

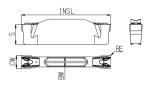
*

[●]В наличии ○ Доступно по запросу

FG

Пластины для обработки канавок с низкой подачей

★ Пер	P	☆	*		☆
вый вы	M		*		☆
★ Первый выбор 🌣 Резерв	K		*		☆
Резерв	S		*		☆


		Код адаптера		дые с	ые сплавы с покрытием								
Код	ц заказа	режущего инструмента SSC	CW ±0.02	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115
	GTD470F050-FG		4.70	0.50	25.7	3.20	4.50			•			
	GTD475F040-FG	_	4.75	0.40	25.7	3.20	4.50			•			
	GTD475F080-FG	- F	4.75	0.80	25.7	3.20	4.50			•			
	GTD480F050-FG		4.80	0.50	25.7	3.20	4.50			•			
	GTD500F020-FG		5.00	0.20	25.7	3.20	4.50	•		•			•
	GTD500F040-FG		5.00	0.40	25.7	3.20	4.50			•			•
	GTD541G020-FG	G	5.41	0.20	25.7	4.20	4.58			0			
	GTD556G050-FG	G	5.56	0.50	25.7	4.20	4.58			0			0
	GTD600H020-FG		6.00	0.20	25.7	5.20	4.67	•		•			•
	GTD635H040-FG		6.35	0.40	25.7	5.20	4.67			0			
	GTD635H050-FG	Н	6.35	0.50	25.7	5.20	4.67			0			
	GTD635H080-FG		6.35	0.80	25.7	5.20	4.67			0			
	GTD714H080-FG		7.14	0.80	25.7	5.20	4.67			•			
	GTD792J080-FG		7.92	0.80	31.0	6.60	6.39			0			
	GTD800J020-FG	J	8.00	0.20	31.0	6.60	6.39	•		•			

[◎] Комплектующие державки указаны на стр. 234-243

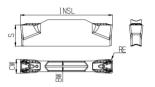
[●]В наличии ○ Доступно по запросу

FG

Пластины для обработки канавок с низкой подачей (для канавок с пружинами)

★ Пер	P		*		☆
вый выб	M		*		☆
Первый выбор 🖟 Резерв	K		*		☆
Резерв	S		*		☆

				Размеры (мм)							спла ытием		
Код за	аказа	адаптера режущего инстру- мента SSC	CW+0.13 +0.09	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115
	GTD185C010-FG		1.85	0.10	20.7	1.60	4.45			•			•
	GTD215C010-FG	– C	2.15	0.10	20.7	1.60	4.45			•			
	GTD265D020-FG	D	2.65	0.20	20.7	2.00	4.53			•			
	GTD315E020-FG		3.15	0.20	20.7	2.30	4.58			•			
	GTD415F020-FG	F	4.15	0.20	25.7	3.20	4.5			•			
	GTD515G020-FG	G	5.15	0.20	25.7	4.20	4.58			•			


[◎] Комплектующие державки указаны на стр. 234-243

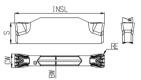
●В наличии ○ Доступно по запросу

Для отрезки и

MG

Пластины для обработки канавок со средней подачей

★ Пер	P	☆	☆	*	☆	☆	
🛪 Первый выбор	M			*	☆		
	K		☆	☆		*	
☆ Резерв	S			*	☆		


				Размеры (мм)						Твердые сплавы с покрытием						
Код	заказа	адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115			
	GTD200C020-MG		2.00	0.20	20.0	1.60	4.45	•		•	•	•				
	GTD239C020-MG	- C	2.39	0.20	20.0	1.60	4.45	0		•		•				
	GTD300E030-MG	_	3.00	0.30	20.0	2.30	4.58	•	•	•	•	•				
	GTD318E030-MG	E	3.18	0.30	20.0	2.30	4.58	0		•	0	•				
	GTD400F030-MG	F	4.00	0.30	25.0	3.20	4.50	0		•	0	•				
	GTD475G030-MG	G	4.75	0.30	25.0	4.20	4.58	0		•		•				
3	GTD500G040-MG	G	5.00	0.40	25.0	4.20	4.58	•	•	•	•	•				
	GTD600H040-MG	- н	6.00	0.40	25.0	5.20	4.67	•		•	•	•				
	GTD635H030-MG		6.35	0.30	25.0	5.20	4.67	0		•		•				
	GTD792J030-MG	- J	7.92	0.30	30.0	6.60	6.39			•						
	GTD800J050-MG	J	8.00	0.50	30.0	6.60	6.39	0		•		•				

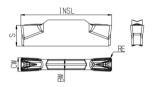
[◎] Комплектующие державки указаны на стр. 234-243

[●]В наличии ○ Доступно по запросу

FT

Пластины для токарной обработки с низкой подачей

★ Пер	P	☆	*	☆	☆
вый вы	M		*		☆
🖈 Первый выбор 🕸 Резерв	K		☆	*	☆
Резерв	S		*		☆

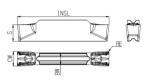

							Se Be			*			☆	
		Код			Размеры (мм)			Твердые сплавы с покрытием						
Код :	заказа	адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
	GTD150B020-FT	В	1.50	0.20	14.0	1.26	4.21			•				
	GTD200C020-FT	С	2.00	0.20	20.0	1.60	4.45			•			•	
	GTD250D020-FT	D	2.50	0.20	20.0	2.00	4.53			•			•	
	GTD300E020-FT	Е –	3.00	0.20	20.0	2.30	4.58	•		•		•	•	
	GTD300E040-FT	E	3.00	0.40	20.0	2.30	4.58			•			•	
	GTD400F020-FT	F	4.00	0.20	25.0	3.20	4.50			•			•	
	GTD400F040-FT		4.00	0.40	25.0	3.20	4.50	•		•		•	•	
	GTD400F080-FT		4.00	0.80	25.0	3.20	4.50			•			•	
	GTD500G040-FT	G	5.00	0.40	25.0	4.20	4.59	•		•		•	•	
	GTD500G080-FT	<u> </u>	5.00	0.80	25.0	4.20	4.59			•			•	
	GTD600H040-FT	_	6.00	0.40	25.0	5.20	4.68	•		•		•	•	
	GTD600H080-FT	Н	6.00	0.80	25.0	5.20	4.68			•			•	
-	GTD600H100-FT		6.00	1.00	25.0	5.20	4.68			•			•	
	GTD800J040-FT		8.00	0.40	30.0	6.60	6.39			•			•	
	GTD800J080-FT	J	8.00	0.80	30.0	6.60	6.39	•		•		•	•	
GTD800J120-FT			8.00	1.20	30.0	6.60	6.39			•			•	

[◎] Комплектующие державки указаны на стр. 234-243

[●]В наличии ○ Доступно по запросу

MT

Пластины для токарной обработки со средней подачей



★ Пер	P	☆	☆	*	☆	☆	☆
🛨 Первый выбор	M			*	☆		☆
	K		☆	☆		*	☆
☆ Резерв	S			*	☆		☆

Код заказа		Код	^в Размеры (мм)						Твердые сплавы с покрытием					
		адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
	GTD200C020-MT	С	2.00	0.20	20.0	1.60	4.45	•		•	•	•	•	
	GTD300E040-MT	E	3.00	0.40	20.0	2.30	4.58	•	•	•	•	•	•	
	GTD400F040-MT	- F -	4.00	0.40	25.0	3.20	4.50	•	•	•	•	•	•	
	GTD400F080-MT		4.00	0.80	25.0	3.20	4.50	0	•	•	0	•	•	
· And	GTD500G040-MT	- G -	5.00	0.40	25.0	4.20	4.59	•	•	•	•	•	•	
	GTD500G080-MT		5.00	0.80	25.0	4.20	4.59	0	•	•	0	•	•	
	GTD600H040-MT		6.00	0.40	25.0	5.20	4.68	0	•	•		•	•	
	GTD600H080-MT	Н	6.00	0.80	25.0	5.20	4.68	•	•	•	•	•	•	
	GTD800J080-MT		8.00	0.80	30.0	6.60	6.39	0	•	•	0	•	•	
	GTD800J120-MT	J	8.00	1.20	30.0	6.60	6.39	0	•	•		•		

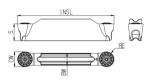
[◎] Комплектующие державки указаны на стр. 234-243

[●]В наличии ○ Доступно по запросу

★ Пер	P	☆	*	☆	☆
вый вы	M		*		☆
🖈 Первый выбор 🕸 Резерв	K	☆	☆	*	☆
Резерв	S		*		☆

Код заказа		Код	Размеры (мм)						Твердые сплавы с покрытием					
		адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
5	GTD300E030-OT	Е	3.00	0.30	20.0	2.30	4.58		•	•		•	•	
	GTD400F040-OT	F	4.00	0.40	25.0	3.20	4.50		•	•		•	•	
	GTD500G040-OT	G	5.00	0.40	25.0	4.20	4.58		•	•		•	•	

[◎] Комплектующие державки указаны на стр. 234-243

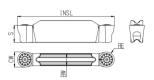

●В наличии ○ Доступно по запросу

для отрезки и

Пластины для отрезки и обработки канавок — серия GT

MR

Пластины для профильной обработки со средней подачей


★ Пер	P	☆	☆	*	☆	☆
🛨 Первый выбор	M			*		☆
	K		☆	☆	*	☆
☆ Резерв	S			*		☆

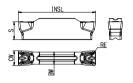
			Код адаптера				08	Твердые сплавы с покрытием						
Код з	заказа	адаптера режущего инстру- мента SSC	CW ±0.05	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115	
	GTD200C100-MR	С	2.00	1.00	20.6	1.60	4.45	•	0	•		•	•	
	GTD300D150-MR	D —	3.00	1.50	20.7	2.00	4.53	•	•	•		•	•	
	GTD318D159-MR	D	3.18	1.59	20.7	2.00	4.53	•	0	•		•	•	
	GTD400E200-MR	E	4.00	2.00	20.0	2.30	4.58	•	•	•		•	•	
	GTD400F200-MR		4.00	2.00	25.7	3.20	4.50	•	•	•		•	•	
	GTD475F238-MR	F	4.75	2.38	25.7	3.20	4.50			•		•		
	GTD500F250-MR		5.00	2.50	25.7	3.20	4.50	•	•	•		•	•	
	GTD600G300-MR	C	6.00	3.00	25.7	4.20	4.58	•	•	•		•	•	
	GTD635G318-MR	– G –	6.35	3.18	25.7	4.20	4.58			•		•		
	GTD800J400-MR	J	8.00	4.00	32.1	6.25	6.39	•	•	•		•	•	

[◎] Комплектующие державки указаны на стр. 234-243

[●]В наличии ○ Доступно по запросу

Пластины для специально оптимизированной профильной обработки

★ Пер	P	☆	*		☆
вый вы	M		*		☆
🗴 Первый выбор 🖟 Резерв	K		☆		*
Резерв	S		*		☆


B B													
		Код		Pa	азмеры (мм)			Твер	дые с	плав	ы с п	окры	тием
Код	заказа	адаптера режущего инстру- мента SSC	CW ±0.02	RE ±0.05	INSL	BW	S	GM1230	GP1120	GST7135	GAT7125	GK1115	GST7115
	GTD200C100-OR	- C	2.00	1.00	20.6	1.60	4.45	•		•			•
	GTD239C120-OR	C	2.39	1.20	20.6	1.60	4.45			•			
	GTD300D150-OR		3.00	1.50	20.7	2.00	4.53	•		•			•
	GTD318D159-OR	D —	3.18	1.59	20.7	2.00	4.53			•			•
	GTD396F198-OR		3.96	1.98	25.7	3.20	4.50			•			
	GTD400F200-OR		4.00	2.00	25.7	3.20	4.50	•		•			•
	GTD450F225-OR	F	4.50	2.25	25.7	3.20	4.50			•			
	GTD475F238-OR		4.75	2.38	25.7	3.20	4.50			•			•
	GTD500F250-OR		5.00	2.50	25.7	3.20	4.50	•		•			•
	GTD600G300-OR	G	6.00	3.00	25.7	4.20	4.58	•		•			•
	GTD635G318-OR	G	6.35	3.18	25.7	4.20	4.58			•			
	GTD714H357-OR	Н	7.14	3.57	25.0	5.20	4.67			•			
GTD800J400-OR		J	8.00	4.00	32.1	6.25	6.39	•		•			•

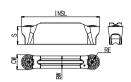
[◎] Комплектующие державки указаны на стр. 234-243

Пластины для отрезки и обработки канавок — серия GK

MT

Пластины для токарной обработки со средней подачей

★ Пер	P	☆	*	☆	☆
★ Первый выбор	M			*	
6op ☆	K			☆	*
∤ ¤ Резерв	S			*	


				Размеры (мм)		œ	Твердые сплавы с покрытием					
Код	заказа	CW ±0.05	RE ±0.05	INSL	BW	S	GP1105	GP1225	GA4230	GA4330	GK1115	
	GKD2002-MT	2.00	0.20	16.1	1.60	3.50	•	•	•	•	•	
	GKD2502-MT	2.50	0.20	18.6	2.00	3.85	•	•	•	•	•	
	GKD3004-MT	3.00	0.40	21.2	2.35	4.80	•	•	•	•	•	
	GKD4004-MT	4.00	0.40	21.0	3.30	4.80	•	•	•	•	•	
	GKD5004-MT	5.00	0.40	26.0	4.10	5.80	•	•	•	•	•	
(3)	GKD5008-MT	5.00	0.80	26.0	4.10	5.80	•	•	•	•	•	
A.	GKD6004-MT	6.00	0.40	26.0	5.00	5.80	0	•	•	•	•	
	GKD6008-MT	6.00	0.80	26.0	5.00	5.80	0	•	•	•	•	
	GKD8008-MT	8.00	0.80	31.0	6.00	6.50	0	•	0	•	•	

[◎] Комплектующие державки указаны на стр. 244-248

[●]В наличии ○ Доступно по запросу

MR

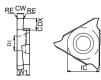
Пластины для профильной обработки со средней подачей

★ Пер	P	☆	*	☆	☆
вый вы	M			*	
🛨 Первый выбор 🕸 Резерв	K			☆	*
Резерг	S			*	

			Размеры (мм)		98	Твердые сплавы с покрытием					
Код	заказа	CW ±0.05	RE ±0.05	INSL	BW	S	GP1105	GP1225	GA4230	GA4330	GK1115
	GKD2010-MR	2.00	1.00	16.0	1.60	3.50	•	•	•		•
	GKD3015-MR	3.00	1.50	21.2	2.35	4.80	•	•	•		•
	GKD4020-MR	4.00	2.00	21.0	3.30	4.80	•	•	•		•
The state of the s	GKD5025-MR	5.00	2.50	26.0	4.10	5.80	•	•	•		•
	GKD6030-MR	6.00	3.00	25.9	5.00	5.80	•	•	•		•
	GKD8040-MR	8.00	4.00	31.0	6.00	6.50	•	•	•		•

[◎] Комплектующие державки указаны на стр. 244-248

●В наличии ○ Доступно по запросу


ДЛЯ ОТРЕЗКИ И

объебстви изпърси

Пластины для отрезки и обработки канавок — серия GB

GB

Прецизионные пластины для обработки канавок

					иеры ім)			Твердые сплавы с покрытием
Код	заказа	CW ±0.025	RE	CDX	IC	W1	D1	GA4230
	GB3033R-005	0.33	0.05	1.0	9.525	3.18	4.4	•
	GB3050R-005	0.50	0.05	1.0	9.525	3.18	4.4	•
	GB3050L-005	0.50	0.05	1.0	9.525	3.18	4.4	•
	GB3075R-010	0.75	0.1	2.0	9.525	3.18	4.4	•
	GB3075L-010	0.75	0.1	2.0	9.525	3.18	4.4	•
	GB3080R-005	0.80	0.05	2.0	9.525	3.18	4.4	•
	GB3080L-005	0.80	0.05	2.0	9.525	3.18	4.4	•
	GB3095R-005	0.95	0.05	2.0	9.525	3.18	4.4	•
	GB3095R-010	0.95	0.1	2.0	9.525	3.18	4.4	•
	GB3100R-005	1.00	0.05	2.0	9.525	3.18	4.4	•
4	GB3100R-010	1.00	0.1	2.0	9.525	3.18	4.4	•
	GB3120R-010	1.20	0.1	2.0	9.525	3.18	4.4	•
	GB3120L-010	1.20	0.1	2.0	9.525	3.18	4.4	•
	GB3120R-020	1.20	0.2	2.0	9.525	3.18	4.4	•
	GB3125R-010	1.25	0.1	2.0	9.525	3.18	4.4	•
	GB3125L-010	1.25	0.1	2.0	9.525	3.18	4.4	•
	GB3140R-010	1.40	0.1	2.0	9.525	3.18	4.4	•
	GB3140L-010	1.40	0.1	2.0	9.525	3.18	4.4	•
	GB3140R-020	1.40	0.2	2.0	9.525	3.18	4.4	•
	GB3140L-020	1.40	0.2	2.0	9.525	3.18	4.4	•
	GB3145R-010	1.45	0.1	2.0	9.525	3.18	4.4	•

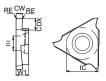
[◎] Комплектующие державки указаны на стр. 249-250

[●]В наличии ○ Доступно по запросу

Пластины для отрезки и обработки канавок — серия GB

GB

Прецизионные пластины для обработки канавок


					иеры ім)			Твердые сплавы с покрытием
Код	заказа	CW ±0.025	RE	CDX	IC	W1	D1	GA4230
	GB3150R-010	1.50	0.1	2.0	9.525	3.18	4.4	•
	GB3150L-010	1.50	0.1	2.0	9.525	3.18	4.4	•
	GB3150R-020	1.50	0.2	2.0	9.525	3.18	4.4	•
	GB3150L-020	1.50	0.2	2.0	9.525	3.18	4.4	•
	GB3175R-010	1.75	0.1	2.0	9.525	3.18	4.4	•
	GB3175L-010	1.75	0.1	2.0	9.525	3.18	4.4	0
	GB3200R-010	2.00	0.1	2.5	9.525	3.18	4.4	•
4	GB3200L-010	2.00	0.1	2.5	9.525	3.18	4.4	•
	GB3200R-020	2.00	0.2	2.5	9.525	3.18	4.4	•
	GB3200L-020	2.00	0.2	2.5	9.525	3.18	4.4	•
	GB3250R-010	2.50	0.1	2.5	9.525	3.18	4.4	•
	GB3250L-010	2.50	0.1	2.5	9.525	3.18	4.4	•
	GB3250R-020	2.50	0.2	2.5	9.525	3.18	4.4	•
	GB3250L-020	2.50	0.2	2.5	9.525	3.18	4.4	•
	GB3300R-020	3.00	0.2	2.5	9.525	3.18	4.4	•
	GB3300L-020	3.00	0.2	2.5	9.525	3.18	4.4	•

[◎] Комплектующие державки указаны на стр. 249-250

Пластины для отрезки и обработки канавок — серия GB

GB

Прецизионные пластины для обработки канавок

				Разм (м	иеры м)			Твердые сплавы с покрытием
Код	заказа	CW ±0.025	RE	CDX	IC	W1	D1	GA4230
	GB4085R-020	0.85	0.2	2.1	12.7	4.76	5.5	0
	GB4125R-020	1.25	0.2	2.0	12.7	4.76	5.5	•
	GB4125L-020	1.25	0.2	2.0	12.7	4.76	5.5	•
	GB4140L-020	1.40	0.2	3.5	12.7	4.76	5.5	0
	GB4150R-010	1.50	0.1	3.5	12.7	4.76	5.5	•
	GB4150R-020	1.50	0.2	3.5	12.7	4.76	5.5	•
	GB4150L-020	1.50	0.2	3.5	12.7	4.76	5.5	•
	GB4175L-010	1.75	0.1	3.5	12.7	4.76	5.5	0
	GB4175R-020	1.75	0.2	3.5	12.7	4.76	5.5	•
	GB4185R-020	1.85	0.2	3.5	12.7	4.76	5.5	0
	GB4185L-020	1.85	0.2	3.8	12.7	4.76	5.5	0
	GB4200R-005	2.00	0.05	3.8	12.7	4.76	5.5	0
	GB4200R-010	2.00	0.1	3.8	12.7	4.76	5.5	0
	GB4200R-020	2.00	0.2	3.5	12.7	4.76	5.5	•
	GB4200L-020	2.00	0.2	3.5	12.7	4.76	5.5	•
	GB4200R-030	2.00	0.3	3.5	12.7	4.76	5.5	•
	GB4200R-050	2.00	0.5	3.8	12.7	4.76	5.5	0

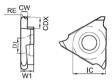
[◎] Комплектующие державки указаны на стр. 249-250

[●]В наличии ○ Доступно по запросу

Пластины для отрезки и обработки канавок — серия GB

GB

Прецизионные пластины для обработки канавок


					иеры ім)			Твердые сплавы с покрытием
Код	заказа	CW ±0.025	RE	CDX	IC	W1	D1	GA4230
	GB4210R-050	2.10	0.5	4.0	12.7	4.76	5.5	•
	GB4220R-030	2.20	0.3	4.0	12.7	4.76	5.5	•
	GB4235R-050	2.35	0.5	4.2	12.7	4.76	5.5	0
	GB4240R-050	2.40	0.5	4.3	12.7	4.76	5.5	•
	GB4250R-030	2.50	0.3	4.0	12.7	4.76	5.5	•
	GB4250L-030	2.50	0.3	4.0	12.7	4.76	5.5	•
	GB4265R-030	2.65	0.3	4.0	12.7	4.76	5.5	•
4	GB4300R-030	3.00	0.3	4.0	12.7	4.76	5.5	•
A	GB4300L-030	3.00	0.3	4.0	12.7	4.76	5.5	•
	GB4330R-030	3.30	0.3	5.2	12.7	4.76	5.5	0
	GB4350R-030	3.50	0.3	5.2	12.7	4.76	5.5	•
	GB4350L-030	3.50	0.3	5.2	12.7	4.76	5.5	•
	GB4400R-020	4.00	0.2	5.2	12.7	4.76	5.5	0
	GB4400R-040	4.00	0.4	5.2	12.7	4.76	5.5	•
	GB4400L-040	4.00	0.4	5.2	12.7	4.76	5.5	•
	GB4430R-040	4.30	0.4	5.2	12.7	4.76	5.5	0

[◎] Комплектующие державки указаны на стр. 249-250

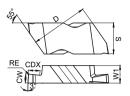
Пластины для отрезки и обработки канавок — серия GB

GBR

Пластины для прецизионной профильной обработки

					иеры м)			Твердые сплавы с покрытием
Код	заказа	CW ±0.025	RE	CDX	IC	W1	D1	GA4230
	GBR4100R-050	1.00	0.5	2.0	12.7	4.76	5.5	•
	GBR4100L-050	1.00	0.5	2.0	12.7	4.76	5.5	0
	GBR4150R-075	1.50	0.75	3.5	12.7	4.76	5.5	•
	GBR4150L-075	1.50	0.75	3.5	12.7	4.76	5.5	•
	GBR4200R-100	2.00	1.0	3.5	12.7	4.76	5.5	•
	GBR4200L-100	2.00	1.0	3.5	12.7	4.76	5.5	•
	GBR4250R-125	2.50	1.25	4.0	12.7	4.76	5.5	0
	GBR4250L-125	2.50	1.25	4.0	12.7	4.76	5.5	0
	GBR4300R-150	3.00	1.5	4.0	12.7	4.76	5.5	0
	GBR4300L-150	3.00	1.5	4.0	12.7	4.76	5.5	0
	GBR4400R-200	4.00	2.0	5.0	12.7	4.76	5.5	•
	GBR4400L-200	4.00	2.0	5.0	12.7	4.76	5.5	•

[◎] Комплектующие державки указаны на стр. 249-250


[●]В наличии О Доступно по запросу

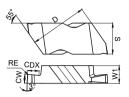
() гожущие инструменты для отрезки и обработки канавок

Прецизионные пластины для обработки канавок — серия GN

GNGP

Прецизионные пластины для обработки канавок (с позитивным передним углом)

		_			Размер (мм))Ы				дые сг окрыт	ілавы ием
Код з	аказа	Специ- фикации пластин	CW ±0.025	RE	CDX	S	W1	D	GST7115	GST7135	GM3225
	GNGP2M050R	2	0.50	0.09	0.64	5.56	3.81	8.74	•	0	
	GNGP2M050L	2	0.50	0.09	0.64	5.56	3.81	8.74	•	0	
	GNGP2031R	2	0.79	0.09	1.27	5.56	3.81	8.74			•
	GNGP2031L	2	0.79	0.09	1.27	5.56	3.81	8.74			•
	GNGP2M080R	2	0.80	0.09	1.27	5.56	3.81	8.74	•	0	
	GNGP2M080L	2	0.80	0.09	1.27	5.56	3.81	8.74	•	0	
	GNGP2M100R	2	1.00	0.09	1.50	5.56	3.81	8.74	•	0	•
	GNGP2M100L	2	1.00	0.09	1.50	5.56	3.81	8.74			•
	GNGP2047R	2	1.19	0.09	1.27	5.56	3.81	8.74			•
	GNGP2047L	2	1.19	0.09	1.27	5.56	3.81	8.74			•
	GNGP2M120R	2	1.20	0.09	1.27	5.56	3.81	8.74	•	0	
	GNGP2M120L	2	1.20	0.09	1.27	5.56	3.81	8.74	•	0	
	GNGP2M150R	2	1.50	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M150L	2	1.50	0.19	2.79	5.56	3.81	8.74			•
	GNGP2062R	2	1.58	0.19	2.79	5.56	3.81	8.74			•
	GNGP2062L	2	1.58	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M170R	2	1.70	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M170L	2	1.70	0.19	2.79	5.56	3.81	8.74			•
	GNGP2070L	2	1.78	0.19	2.79	5.56	3.81	8.74			•
	GNGP2078R	2	1.98	0.19	2.79	5.56	3.81	8.74			•
	GNGP2078L	2	1.98	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M200R	2	2.00	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M200L	2	2.00	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M220R	2	2.20	0.19	2.79	5.56	3.81	8.74			•
	GNGP2M220L	2	2.20	0.19	2.79	5.56	3.81	8.74			•
	GNGP2094R	2	2.38	0.19	2.79	5.56	3.81	8.74			•
	GNGP2094L	2	2.38	0.19	2.79	5.56	3.81	8.74			0
	GNGP2M250R	2	2.50	0.19	2.79	5.56	3.81	8.74			0
	GNGP2M250L	2	2.50	0.19	2.79	5.56	3.81	8.74			0
	GNGP2125R	2	3.18	0.19	2.79	5.56	3.81	8.74			•
	GNGP2125L	2	3.18	0.19	2.79	5.56	3.81	8.74			•

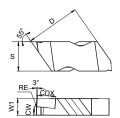

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

Режущие инструмен для отрезки и обработки канавок

Прецизионные пластины для обработки канавок — серия GN

GNGP

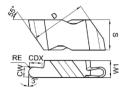
Прецизионные пластины для обработки канавок (с позитивным передним углом)


					Размер (мм)	ЪЫ			Твердые сплавы с покрытием		
Код за	аказа	Специ- фикации пластин	CW ±0.025	RE	CDX	S	W1	D	GST7115	GST7135	GM3225
	GNGP3031R	3	0.79	0.09	1.27	8.74	4.95	16.10			•
	GNGP3031L	3	0.79	0.09	1.27	8.74	4.95	16.10			•
	GNGP3M100R	3	1.00	0.19	1.91	8.74	4.95	16.10			•
	GNGP3M100L	3	1.00	0.19	1.91	8.74	4.95	16.10			•
	GNGP3047R	3	1.19	0.19	1.91	8.74	4.95	16.10			•
	GNGP3047L	3	1.19	0.19	1.91	8.74	4.95	16.10			•
	GNGP3M120R	3	1.20	0.19	1.91	8.74	4.95	16.10	•	0	
	GNGP3M120L	3	1.20	0.19	1.91	8.74	4.95	16.10	•	0	
	GNGP3M150R	3	1.50	0.19	2.39	8.74	4.95	16.10	•	0	•
	GNGP3M150L	3	1.50	0.19	2.39	8.74	4.95	16.10	•	0	•
	GNGP3062R	3	1.58	0.19	2.39	8.74	4.95	16.10			•
	GNGP3062L	3	1.58	0.19	2.39	8.74	4.95	16.10			•
	GNGP3070L	3	1.78	0.19	2.39	8.74	4.95	16.10			•
	GNGP3078R	3	1.98	0.19	2.39	8.74	4.95	16.10			•
	GNGP3078L	3	1.98	0.19	2.39	8.74	4.95	16.10			•
	GNGP3M200R	3	2.00	0.19	2.39	8.74	4.95	16.10	•	0	•
	GNGP3M200L	3	2.00	0.19	2.39	8.74	4.95	16.10			•
	GNGP3094R	3	2.39	0.19	3.81	8.74	4.95	16.10			•
	GNGP3094L	3	2.39	0.19	3.81	8.74	4.95	16.10			•
	GNGP3M250R	3	2.50	0.19	3.81	8.74	4.95	16.10	•	0	•
	GNGP3M250L	3	2.50	0.19	3.81	8.74	4.95	16.10	•	0	•
	GNGP3M275R	3	2.75	0.19	3.81	8.74	4.95	16.10			•
	GNGP3M300R	3	3.00	0.19	3.81	8.74	4.95	16.10			•
	GNGP3M300L	3	3.00	0.19	3.81	8.74	4.95	16.10			0
	GNGP3125R	3	3.18	0.19	3.81	8.74	4.95	16.10			•
	GNGP3125L	3	3.18	0.19	3.81	8.74	4.95	16.10			0
	GNGP3M350R	3	3.50	0.19	3.81	8.74	4.95	16.10			0
	GNGP3M350L	3	3.50	0.19	3.81	8.74	4.95	16.10			0
	GNGP3189R	3	4.80	0.57	3.81	8.74	4.95	16.10			•
	GNGP3189L	3	4.80	0.57	3.81	8.74	4.95	16.10			•

Прецизионные пластины для обработки канавок — серия GN

GNGDP

Прецизионные пластины для глубокой обработки канавок (с позитивным передним углом)


		Спец-			Размерь (мм)	ol			Твердые сплавы с покрытием			
Код за	яказа	ифи- кации пластин	CW ±0.025	RE	CDX	S	W1	D	GST7115	GST7135	GM3225	
	GNGDP2M150R	2	1.50	0.19	4.07	5.56	3.81	10.92	•		,	
	GNGDP2M150L	2	1.50	0.19	4.07	5.56	3.81	10.92	•			
	GNGDP2M200R	2	2.00	0.19	5.07	5.56	3.81	10.92	•			
	GNGDP2M200L	2	2.00	0.19	5.07	5.56	3.81	10.92	•			
	GNGDP2M250L	2	2.50	0.19	5.07	5.56	3.81	10.92	•			
	GNGDP3062R	3	1.58	0.19	3.18	8.74	4.95	18.20	•			
	GNGDP3062L	3	1.58	0.19	3.18	8.74	4.95	18.20	•	0		
	GNGDP3M200L	3	2.00	0.19	4.09	8.74	4.95	18.20	•			
	GNGDP3094R	3	2.39	0.19	6.35	8.74	4.95	18.20	•	0		
	GNGDP3094L	3	2.39	0.19	6.35	8.74	4.95	18.20	•	0		
	GNGDP3M250R	3	2.50	0.19	6.35	8.74	4.95	18.20	•	0		
	GNGDP3M250L	3	2.50	0.19	6.35	8.74	4.95	18.20	•	0		
	GNGDP3M300R	3	3.00	0.19	6.35	8.74	4.95	18.20	•	•		
	GNGDP3M300L	3	3.00	0.19	6.35	8.74	4.95	18.20	•	•		
	GNGDP3125R	3	3.18	0.19	6.35	8.74	4.95	18.20			•	
	GNGDP3125L	3	3.18	0.19	6.35	8.74	4.95	18.20			•	
	GNGDP3189R	3	4.80	0.57	6.35	8.74	4.95	18.20			•	
	GNGDP3189L	3	4.80	0.57	6.35	8.74	4.95	18.20			•	

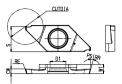
[◎] Комплектующие державки указаны на стр. 251-253

Прецизионные пластины для обработки канавок — серия GN

GNR

Пластины для прецизионной профильной обработки

					Размер (мм)	ЭЫ			Твердые сплавы с покрытием			
Код за	каза	Специ- фикации пластин	CW ±0.025	RE	CDX	S	W1	D	GST7115	GST7135	GM3225	
	GNR2M050R	2	1.00	0.50	1.27	5.56	3.81	8.74	•	0	,	
	GNR2M050L	2	1.00	0.50	1.27	5.56	3.81	8.74	•	•		
	GNR2M075R	2	1.50	0.75	2.79	5.56	3.81	8.74	•	•		
	GNR2M075L	2	1.50	0.75	2.79	5.56	3.81	8.74	•	•		
	GNR2M100R	2	2.00	1.00	2.79	5.56	3.81	8.74	•	•		
	GNR2M100L	2	2.00	1.00	2.79	5.56	3.81	8.74	•	•		
	GNR2M125R	2	2.50	1.25	2.79	5.56	3.81	8.74		0		
	GNR3031L	3	1.58	0.79	2.39	8.74	4.95	16.10	•	•		
	GNR3M100R	3	2.00	1.00	2.39	8.74	4.95	16.10	•	•	0	
	GNR3M100L	3	2.00	1.00	2.39	8.74	4.95	16.10	•	•	•	
	GNR3M150R	3	3.00	1.50	3.81	8.74	4.95	16.10	•	•	•	
	GNR3M150L	3	3.00	1.50	3.81	8.74	4.95	16.10	•	•	•	
	GNR3047L	3	2.39	1.19	3.81	8.74	4.95	16.10	•	•	•	
	GNR3047R	3	2.39	1.19	3.81	8.74	4.95	16.10	•	•	•	
	GNR3062R	3	3.18	1.59	3.81	8.74	4.95	16.10			•	
	GNR3078L	3	3.96	1.98	3.81	8.74	4.95	16.10	•	•		


[◎] Комплектующие державки указаны на стр. 251-253

Режущие инструмент для отрезки и обработки канавок

Пластины для отрезки и обработки канавок — серия GST

GSTC-U

Пластины для отрезки (острая режущая кромка)

. На рис. показана правая

									па рис. показана правал			
					Размеры (мм)				спла	одые авы с ытием		
Код	заказа	CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125		
	GSTC3R050N-U	0.50	5	0.03	3	8.7	5	0 °	•	0		
	GSTC3L050N-U	0.50	5	0.03	3	8.7	5	0 °	0	0		
	GSTC3R070N-U	0.70	8	0.03	3	8.7	5	0 °	•	•		
	GSTC3L070N-U	0.70	8	0.03	3	8.7	5	0 °	0	0		
	GSTC3R100N-U	1.00	12	0.03	3	8.7	5	0 °	•	•		
	GSTC3L100N-U	1.00	12	0.03	3	8.7	5	0 °	•	•		
	GSTC3R125N-U	1.25	12	0.03	3	8.7	5	0 °	0	•		
	GSTC3L125N-U	1.25	12	0.03	3	8.7	5	0 °	•	•		
	GSTC3R150N-U	1.50	12	0.03	3	8.7	5	0 °	•	•		
	GSTC3L150N-U	1.50	12	0.03	3	8.7	5	0 °	•	0		
	GSTC3R200N-U	2.00	12	0.03	3	8.7	5	0 °	•	•		
	GSTC3L200N-U	2.00	12	0.03	3	8.7	5	0 °	0	0		
	GSTC3R050R16-U	0.50	5	0.03	3	8.7	5	16°	•	0		
	GSTC3L050R16-U	0.50	5	0.03	3	8.7	5	16°	•	0		
	GSTC3R070R16-U	0.70	8	0.03	3	8.7	5	16°	0	0		
	GSTC3L070R16-U	0.70	8	0.03	3	8.7	5	16°	0	0		
	GSTC3R100R16-U	1.00	12	0.03	3	8.7	5	16°	•	•		
	GSTC3L100R16-U	1.00	12	0.03	3	8.7	5	16°	•	•		
	GSTC3R125R16-U	1.25	12	0.03	3	8.7	5	16°	0	•		
	GSTC3L125R16-U	1.25	12	0.03	3	8.7	5	16°	0	0		
	GSTC3R150R16-U	1.50	12	0.03	3	8.7	5	16°	•	0		
	GSTC3L150R16-U	1.50	12	0.03	3	8.7	5	16°	•	0		
	GSTC3R200R16-U	2.00	12	0.03	3	8.7	5	16°	•	•		
	GSTC3L200R16-U	2.00	12	0.03	3	8.7	5	16°	•	0		

[◎] Комплектующие державки указаны на стр. 254-255

[●]В наличии ○ Доступно по запросу

Пластины для отрезки и обработки канавок — серия GST

GSTC-U

Пластины для отрезки (острая режущая кромка)

				ı	Размеры (мм)				Твердые сплавы с покрытием	
Код	заказа	CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125
	GSTC4R150N-U	1.50	16	0.05	4	9.5	5	0 °	•	•
	GSTC4L150N-U	1.50	16	0.05	4	9.5	5	0 °	•	0
	GSTC4R200N-U	2.00	16	0.05	4	9.5	5	0 °	0	•
	GSTC4L200N-U	2.00	16	0.05	4	9.5	5	0°	0	0
	GSTC4R150R16-U	1.50	16	0.05	4	9.5	5	16°	•	0
	GSTC4L150R16-U	1.50	16	0.05	4	9.5	5	16°	•	•
	GSTC4R200R16-U	2.00	16	0.05	4	9.5	5	16°	•	0
	GSTC4L200R16-U		16	0.05	4	9.5	5	16°	•	0

[◎] Комплектующие державки указаны на стр. 254-255

[●]В наличии ○ Доступно по запросу

С Режущие инструменть для отрезки и объеботки канавок

Пластины для отрезки и обработки канавок — серия GST

GSTC-T

Пластины для отрезки (усиленная режущая кромка)

Н́а	nuc	показана	правад
Пa	рис.	показапа	правая

				I	Размеры (мм)				спла	одые звы с ытием
Код	заказа	CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125
	GSTC3R100N-T	1.00	12	0.08	3	8.7	5	0 °	•	•
	GSTC3L100N-T	1.00	12	0.08	3	8.7	5	0 °	•	•
	GSTC3R150N-T	1.50	12	0.08	3	8.7	5	0 °	•	0
	GSTC3L150N-T	1.50	12	0.08	3	8.7	5	0 °	0	•
	GSTC3R200N-T	2.00	12	0.08	3	8.7	5	0 °	•	0
	GSTC3L200N-T	2.00	12	0.08	3	8.7	5	0 °	0	0
	GSTC3R100R16-T	1.00	12	0.08	3	8.7	5	16°	•	•
	GSTC3L100R16-T	1.00	12	0.08	3	8.7	5	16°	0	•
	GSTC3R150R16-T	1.50	12	0.08	3	8.7	5	16°	•	•
	GSTC3L150R16-T	1.50	12	0.08	3	8.7	5	16°	0	0
	GSTC3R200R16-T	2.00	12	0.08	3	8.7	5	16°	•	0
	GSTC3L200R16-T	2.00	12	0.08	3	8.7	5	16°	0	0
	GSTC4R150N-T	1.50	16	0.08	4	9.5	5	0 °	•	0
	GSTC4L150N-T	1.50	16	0.08	4	9.5	5	0 °	0	0
	GSTC4R200N-T	2.00	16	0.08	4	9.5	5	0 °	0	0
	GSTC4L200N-T	2.00	16	0.08	4	9.5	5	0 °	0	0
	GSTC4R150R16-T	1.50	16	0.08	4	9.5	5	16°	•	0
	GSTC4L150R16-T	1.50	16	0.08	4	9.5	5	16°	•	0
	GSTC4R200R16-T	2.00	16	0.08	4	9.5	5	16°	0	•
	GSTC4L200R16-T	2.00	16	0.08	4	9.5	5	16°	0	0

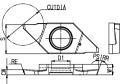
[◎] Комплектующие державки указаны на стр. 254-255

[●]В наличии ○ Доступно по запросу

Пластины для отрезки и обработки канавок — серия GST

GSTC-N

Пластины для отрезки (Острая вершина без канавки)


	Размеры (мм)									одые авы с ытием
Код	заказа	CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125
	GSTC3R050N-N	0.50	5	0	3	8.7	5	0 °	0	0
	GSTC3L050N-N	0.50	5	0	3	8.7	5	0°	0	0
	GSTC3R070N-N	0.70	8	0	3	8.7	5	0 °	0	0
	GSTC3L070N-N	0.70	8	0	3	8.7	5	0 °	•	•
	GSTC3R100N-N	1.00	12	0	3	8.7	5	0 °	0	•
	GSTC3L100N-N	1.00	12	0	3	8.7	5	0 °	•	0
	GSTC3R150N-N	1.50	12	0	3	8.7	5	0 °	0	0
	GSTC3L150N-N	1.50	12	0	3	8.7	5	0 °	0	0
	GSTC3R200N-N	2.00	12	0	3	8.7	5	0 °	0	0
	GSTC3L200N-N	2.00	12	0	3	8.7	5	0 °	0	0
	GSTC3R050R20-N	0.50	5	0	3	8.7	5	20 °	0	0
	GSTC3L050R20-N	0.50	5	0	3	8.7	5	20 °	0	0
	GSTC3R070R20-N	0.70	8	0	3	8.7	5	20 °	0	0
	GSTC3L070R20-N	0.70	8	0	3	8.7	5	20 °	0	0
	GSTC3R100R20-N	1.00	12	0	3	8.7	5	20 °	0	0
	GSTC3L100R20-N	1.00	12	0	3	8.7	5	20 °	0	0
	GSTC3R150R20-N	1.50	12	0	3	8.7	5	20 °	0	0
	GSTC3L150R20-N	1.50	12	0	3	8.7	5	20 °	0	•
	GSTC3R200R20-N	2.00	12	0	3	8.7	5	20 °	0	0
	GSTC3L200R20-N	2.00	12	0	3	8.7	5	20 °	0	0

[◎] Комплектующие державки указаны на стр. 254-255

Пластины для отрезки и обработки канавок — серия GST

GSTC-N

Пластины для отрезки (Острая вершина без канавки)

Наβ	эис.	показана	правая
-----	------	----------	--------

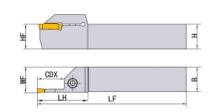
				Твердые сплавы с покрытием						
Код заказа		CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125
	GSTC4R150N-N	1.50	16	0	4	9.5	5	0 °	0	0
	GSTC4L150N-N	1.50	16	0	4	9.5	5	0 °	0	0
	GSTC4R200N-N	2.00	16	0	4	9.5	5	0 °	0	0
	GSTC4L200N-N	2.00	16	0	4	9.5	5	0 °	0	•
	GSTC4R150R20-N	1.50	16	0	4	9.5	5	20°	0	0
	GSTC4L150R20-N	1.50	16	0	4	9.5	5	20°	0	0
	GSTC4R200R20-N	2.00	16	0	4	9.5	5	20°	0	0
	GSTC4L200R20-N	2.00	16	0	4	9.5	5	20°	0	0

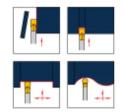
[◎] Комплектующие державки указаны на стр. 254-255

Пластины для отрезки и обработки канавок — серия GST

GSTS-U

Пластины для отрезки — для вторичного шпинделя (острая режущая кромка)

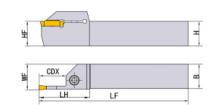

				ſ	Размеры (мм)				спла	одые авы с ытием
Код	заказа	CW ±0.02	CUTDIA	RE	W1	S	D1	PSIRR	GAT7115	GAT7125
	GSTSA2R100N-U	1.00	6	0.05	2.2	8.7	4.4	0°	0	0
	GSTSA2L100N-U	1.00	6	0.05	2.2	8.7	4.4	0°	•	•
	GSTSA2R150N-U	1.50	9	0.05	2.2	8.7	4.4	0 °	0	•
	GSTSA2L150N-U	1.50	9	0.05	2.2	8.7	4.4	0 °	•	0
	GSTSA2R200N-U	2.00	12	0.05	2.2	8.7	4.4	0 °	0	0
	GSTSA2L200N-U	2.00	12	0.05	2.2	8.7	4.4	0 °	0	0
	GSTSB2R150N-U	1.50	14	0.05	2.2	9.5	4.4	0 °	•	0
	GSTSB2L150N-U	1.50	14	0.05	2.2	9.5	4.4	0 °	0	0
	GSTSB2R200N-U	2.00	16	0.05	2.2	9.5	4.4	0 °	0	0
	GSTSB2L200N-U	2.00	16	0.05	2.2	9.5	4.4	0 °	0	0

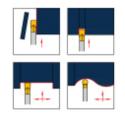

[◎] Комплектующие державки указаны на стр. 256

[●]В наличии ○ Доступно по запросу

Державка для проходной обработки

	Код адаптера		P	азмер	ы (мм)		Винт	Ключ	Рекомен- дуемый	Bec	Нал	ичие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	LF	LH	WF			крутящий момент (Н.м)	(кг)	R	L
GTER/L1616H-B08		16	16	8	100	29	17	SCAM050160H	TH40LH	3.0	0.38	•	•
GTER/L1616H-B15		16	16	15	100	36.5	17	SCAM050160H	TH40LH	3.5	0.18	•	•
GTER/L2020K-B08	В	20	20	8	125	29	21	SCAM050200H	TH40LH	3.0	0.38	•	•
GTER/L2020K-B15	Б	20	20	15	125	36.5	21	SCAM050200H	TH40LH	3.5	0.36	•	•
GTER/L2525M-B08		25	25	8	150	29	26	SCAM060200H	TH50LH	4.5	0.70	•	•
GTER/L2525M-B15		25	25	15	150	36.5	26	SCAM060200H	TH50LH	4.5	0.67	•	•
GTER/L1616H-C08		16	16	8	100	29	17	SCAM050160H	TH40LH	3.0	0.38	•	•
GTER/L1616H-C15		16	16	15	100	36.5	17	SCAM050160H	TH40LH	4.0	0.18	•	•
GTER/L2020K-C08		20	20	8	125	29	21	SCAM050200H	TH40LH	4.0	0.36	•	•
GTER/L2020K-C15	С	20	20	15	125	36.5	21	SCAM050200H	TH40LH	3.0	0.38	•	•
GTER/L2020K-C17		20	20	17	125	44.8	21	SCAM050200H	TH40LH	4.0	0.37	•	•
GTER/L2525M-C08		25	25	8	150	29	26	SCAM060200H	TH50LH	4.5	0.71	•	•
GTER/L2525M-C15		25	25	15	150	36.5	26	SCAM060200H	TH50LH	4.5	0.68	•	•
GTER/L1616H-D10		16	16	10	100	32	17	SCAM050160H	TH40LH	3.0	0.37	•	•
GTER/L1616H-D20		16	16	20	100	44.8	17	SCAM050160H	TH40LH	4.0	0.18	•	•
GTER/L2020K-D10		20	20	10	125	32	21	SCAM050200H	TH40LH	3.0	0.37	•	•
GTER/L2020K-D20	. D	20	20	20	125	44.8	21	SCAM050200H	TH40LH	4.0	0.35	•	•
GTER/L2525M-D10		25	25	10	150	32	26	SCAM060200H	TH50LH	4.5	0.70	•	•
GTER/L2525M-D20		25	25	20	150	44.8	26	SCAM060200H	TH50LH	4.5	0.66	•	•
GTER/L3225P-D20		32	25	20	170	44.8	26	SCAM060200H	TH50LH	4.5	0.96	•	0
GTER/L3232P-D20		32	32	20	170	44.8	33	SCAM060200H	TH50LH	4.5	1.23	•	•
GTER/L1616H-E10		16	16	10	100	32	17	SCAM050160H	TH40LH	4.0	0.18	•	•
GTER/L1616H-E20	Е	16	16	20	100	44.8	17	SCAM050160H	TH40LH	3.5	0.37	•	•
GTER/L2020K-E10		20	20	10	125	32	21	SCAM050200H	TH40LH	3.5	0.38	•	•

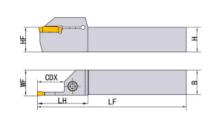

Примечания: SCAM040160H обозначает М4X16

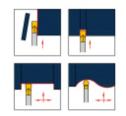

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

Державки для отрезки и обработки канавок — серия GT

Державка для проходной обработки

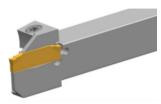
	Код адаптера		P	азмер	ы (мм)		Винт	Ключ	Рекомен- дуемый	Bec	Налі	ичие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	LF	LH	WF			крутящий момент (Н.м)	(кг)	R	L
GTER/L2020K-E20		20	20	20	125	44.8	21	SCAM050200H	TH40LH	4.0	0.35	•	•
GTER/L2525M-E10		25	25	10	150	32	26	SCAM060200H	TH50LH	4.0	0.70	•	•
GTER/L2525M-E20		25	25	20	150	44.8	26	SCAM060200H	TH50LH	4.5	0.65	•	•
GTER/L3225P-E10	E	32	25	10	170	32	26	SCAM060200H	TH50LH	4.5	1.22	0	0
GTER/L3225P-E20		32	25	20	170	44.8	26	SCAM060200H	TH50LH	4.0	1.31	0	0
GTER/L3232P-E10		32	32	10	170	32	33	SCAM060200H	TH50LH	4.0	1.00	•	0
GTER/L3232P-E20		32	32	20	170	44.8	33	SCAM060200H	TH50LH	4.5	0.95	•	•
GTER/L1616H-F13		16	16	13	100	36.5	17	SCAM050160H	TH40LH	4.0	0.19	•	•
GTER/L1616H-F25		16	16	25	100	47	17	SCAM050160H	TH40LH	4.5	0.17	0	0
GTER/L2020K-F13		20	20	13	125	36.5	21	SCAM050200H	TH40LH	4.0	0.37	•	•
GTER/L2020K-F25		20	20	25	125	47	21	SCAM050200H	TH40LH	4.5	0.33	•	•
GTER/L2525M-F13		25	25	13	150	36.5	26	SCAM060200H	TH50LH	4.0	0.67	•	•
GTER/L2525M-F20	F	25	25	20	150	44.8	26	SCAM060200H	TH50LH	4.5	0.65	0	0
GTER/L2525M-F25		25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.65	•	•
GTER/L3225P-F13		32	25	13	170	36.5	26	SCAM060200H	TH50LH	4.5	1.17	0	0
GTER/L3225P-F25		32	25	25	170	47	26	SCAM060200H	TH50LH	4.0	1.28	0	0
GTER/L3232P-F13		32	32	13	170	36.5	33	SCAM060200H	TH50LH	4.0	0.99	•	•
GTER/L3232P-F25		32	32	25	170	47	33	SCAM060200H	TH50LH	4.5	0.92	•	•
GTER/L2020K-G13		20	20	13	125	36.5	21	SCAM050200H	TH40LH	4.5	0.37	•	•
GTER/L2020K-G22		20	20	22	125	44.8	21	SCAM050200H	TH40LH	4.5	0.35	•	•
GTER/L2525M-G13	- G	25	25	13	150	36.5	26	SCAM060200H	TH50LH	4.5	0.70	•	•
GTER/L2525M-G22	G	25	25	22	150	44	26	SCAM060200H	TH50LH	4.5	0.64	•	•
GTER/L2525M-G25		25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.63	•	•
GTER/L2525M-G32		25	25	32	150	54.8	26	SCAM060200H	TH50LH	4.5	0.13	•	•

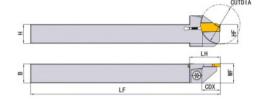

Примечания: SCAM060200H обозначает M6X20

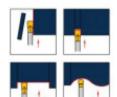

О Режущие и для отрези

Державки для отрезки и обработки канавок — серия GT

Державка для проходной обработки

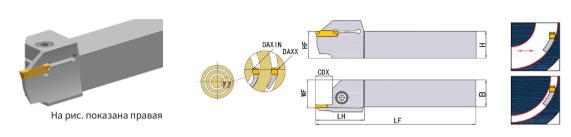





	Код адаптера		Р	азмер	ы (мм)		Винт	Ключ	Рекомен- дуемый	Bec	Налі	ичие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	LF	LH	WF	F		крутящий момент (Н.м)	(кг)	R	L
GTER/L3225P-G13		32	25	13	170	36.5	26	SCAM060200H	TH50LH	4.5	1.00	•	0
GTER/L3225P-G32		32	25	32	170	54.8	26	SCAM060200H	TH50LH	4.5	0.91	•	0
GTER/L3232P-G13	G	32	32	13	170	36.5	33	SCAM060200H	TH50LH	4.5	1.29	•	•
GTER/L3232P-G25		32	32	25	170	47	33	SCAM060200H	TH50LH	4.5	1.20	•	•
GTER/L3232P-G32		32	32	32	170	54.8	33	SCAM060200H	TH50LH	4.5	1.16	•	•
GTER/L2525M-H16		25	25	16	150	44.8	26	SCAM060200H	TH50LH	4.5	0.68	•	•
GTER/L2525M-H25		25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.64	•	•
GTER/L2525M-H32		25	25	32	150	54.8	26	SCAM060200H	TH50LH	4.5	0.61	•	•
GTER/L3225P-H16	н	32	25	16	170	44.8	26	SCAM060200H	TH50LH	4.5	1.00	•	0
GTER/L3225P-H32		32	25	32	170	54.8	26	SCAM060200H	TH50LH	4.5	0.91	•	0
GTER/L3232P-H16		32	32	16	170	44.8	33	SCAM060200H	TH50LH	4.5	1.28	•	•
GTER/L3232P-H25		32	32	25	170	47	33	SCAM060200H	TH50LH	4.5	1.20	•	•
GTER/L3232P-H32		32	32	32	170	54.8	33	SCAM060200H	TH50LH	4.5	1.15	•	•
GTER/L2525M-J16		25	25	16	150	44.8	26	SCAM080260H	TH60LH	7.0	0.68	•	•
GTER/L2525M-J24		25	25	24	150	54.8	26	SCAM080260H	TH60LH	7.0	0.66	•	•
GTER/L2525M-J40	. J	25	25	40	150	62.8	26	SCAM080260H	TH60LH	7.0	0.60	•	•
GTER/L3232P-J24		32	32	24	170	54.8	33	SCAM080260H	TH60LH	7.0	1.16	•	•
GTER/L3232P-J32		32	32	32	170	54.8	33	SCAM080260H	TH60LH	7.0	1.23	•	•
GTER/L3232P-J40		32	32	40	170	62.8	33	SCAM080260H	TH60LH	7.0	1.12	•	•

Примечания: SCAM060200H обозначает M6X20

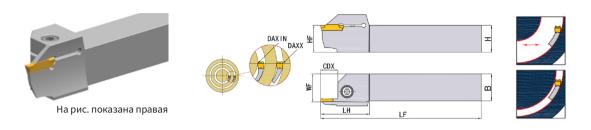
Державка для проходной обработки Специально для автоматических токарных станков



На рис. пон	казана правая
-------------	---------------

V	Код адапте- ра ре-			P	азмеры (мм)			Винт	Ключ	Реко- мендуе- мый кру-	Bec	Нал чи	
Код заказа	жущего инстру- мента SSC	H=HF	В	CDX	CUTDIA	LF	LH	WF			тящий момент (Н.м)	(кг)	R	L
GTER/L1212F-BD16-S		12	12	8	16	85	19.5	12.45	SI60M040160-05718H	TT15PH	3.0	0.09	•	•
GTER/L1212JX-BD16-S		12	12	8	16	120	19.5	12.45	SI60M040160-05718H	TT15PH	3.0	0.13	•	•
GTER/L1212F-BD24-S	В	12	12	12	24	85	19.5	12.15	SI60M040160-05718H	TT15PH	3.0	0.09	•	•
GTER/L1212JX-BD24-S		12	12	12	24	120	19.5	12.15	SI60M040160-05718H	TT15PH	3.0	0.13	•	•
GTER/L1616JX-BD16-S		16	16	8	16	120	19.5	11.90	SI60M040160-05718H	TT15PH	3.0	0.24	•	•
GTER/L1010F-CD24-S		10	10	12	24	85	19.5	10.20	SI60M040160-05718H	TT15PH	3.0	0.06	•	•
GTER/L1212F-CD24-S		12	12	12	24	85	19.5	12.20	SI60M040160-05718H	TT15PH	3.0	0.09	•	•
GTER/L1212JX-CD24-S		12	12	12	24	120	19.5	12.20	SI60M040160-05718H	TT15PH	3.0	0.13	•	•
GTER/L1616JX-CD16-S	С	16	16	8	16	120	24.5	16.00	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1616JX-CD24-S		16	16	12	24	120	24.5	16.00	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1616JX-CD32-S		16	16	16	32	120	24.5	16.20	SI60M040160-05718H	TT15PH	3.0	0.21	•	•
GTER/L2020K-CD34-S		20	20	17	34	125	32.5	20.20	SCAM050160H ^①	TH40LH ²	4.0	0.36	0	•
GTER/L1212F-DD24-S		12	12	12	24	85	19.5	12.25	SI60M040160-05718H	TT15PH	3.0	0.13	0	0
GTER/L1212JX-DD24-S	D	12	12	12	24	120	19.5	12.25	SI60M040160-05718H	TT15PH	3.0	0.13	•	•
GTER/L1616JX-DD32-S		16	16	16	32	120	24.5	16.25	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1212JX-ED24-S		12	12	12	24	120	19.5	12.30	SI60M040160-05718H	TT15PH	3.0	0.13	•	•
GTER/L1616JX-ED16-S		16	16	8	16	120	24.5	16.30	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1616JX-ED32-S		16	16	16	32	120	24.5	16.30	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1616JX-ED34-S	Е	16	16	17	34	120	24.5	16.30	SI60M040160-05718H	TT15PH	3.0	0.22	•	•
GTER/L1616JX-ED38-S		16	16	19	38	120	29	16.30	SI60M040160-05718H	TT15PH	3.0	0.22	0	0
GTER/L2012JX-ED42-S		20	12	21	42	120	31	16.30	SI60M050160-07214H	TT20PH	3.5	0.20	0	0
GTER/L2020JX-ED42-S		20	20	21	42	120	31	12.30	SI60M050160-07214H	TT20PH	3.5	0.20	•	•

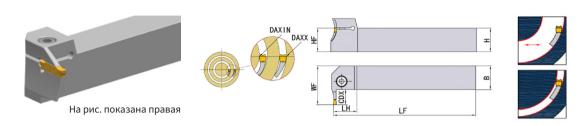
Примечания: SI60M040160* обозначает M4X16
① Винт с внутренним шестигранником ② L-образный ключ


Подрезные державки — линейные

	Код адаптера			Р	азмерь	ы (мм)				Винт	Ключ	Рекомен- дуемый крутя-	Bec	Налі	ичие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	DAXIN	DAXX	LF	LH	WF	P		щий момент (Н.м)	(кг)	R	L
GTFR/L2020K-E12-D38		20	20	12	38	48	125	32	21	SCAM050200H	TH40LH	4.0	0.38	•	•
GTFR/L2020K-E12-D42		20	20	12	42	60	125	32	21	SCAM050200H	TH40LH	4.0	0.38	•	•
GTFR/L2020K-E12-D54		20	20	12	54	75	125	32	21	SCAM050200H	TH40LH	4.0	0.38	•	•
GTFR/L2020K-E12-D67		20	20	12	67	100	125	32	21	SCAM050200H	TH40LH	4.5	0.38	0	0
GTFR/L2020K-E12-D90		20	20	12	90	130	125	32	21	SCAM050200H	TH40LH	4.5	0.38	•	0
GTFR/L2020K-E12-D130	. E	20	20	12	130	300	125	32	21	SCAM050200H	TH40LH	4.5	0.37	0	0
GTFR/L2525M-E18-D38		25	25	18	38	48	150	40	26	SCAM060200H	TH50LH	5.0	0.68	•	•
GTFR/L2525M-E18-D42		25	25	18	42	60	150	40	26	SCAM060200H	TH50LH	5.0	0.68	•	•
GTFR/L2525M-E18-D54		25	25	18	54	75	150	40	26	SCAM060200H	TH50LH	5.0	0.68	•	•
GTFR/L2525M-E18-D67		25	25	18	67	100	150	40	26	SCAM060200H	TH50LH	5.0	0.68	•	•
GTFR/L2525M-E18-D90		25	25	18	90	130	150	40	26	SCAM060200H	TH50LH	5.0	0.67	•	•
GTFR/L2525M-E18-D130		25	25	18	130	300	150	40	26	SCAM060200H	TH50LH	5.0	0.67	•	•
GTFR/L2020K-F12-D40		20	20	12	40	60	125	34	21	SCAM050200H	TH40LH	4.5	0.39	•	•
GTFR/L2020K-F12-D52		20	20	12	52	72	125	34	21	SCAM050200H	TH40LH	4.5	0.38	•	•
GTFR/L2020K-F12-D64		20	20	12	64	100	125	34	21	SCAM050200H	TH40LH	4.5	0.38	0	0
GTFR/L2020K-F12-D92		20	20	12	92	140	125	34	21	SCAM050200H	TH40LH	4.5	0.38	0	0
GTFR/L2020K-F12-D132		20	20	12	132	230	125	34	21	SCAM050200H	TH40LH	5.0	0.38	0	0
GTFR/L2020K-F12-D220		20	20	12	220	500	125	34	21	SCAM050200H	TH40LH	5.0	0.38	0	0
GTFR/L2525M-F12-D40	F	25	25	12	40	60	150	34	26	SCAM060200H	TH50LH	5.5	0.71	•	•
GTFR/L2525M-F12-D52		25	25	12	52	72	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-F12-D64		25	25	12	64	100	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-F12-D92		25	25	12	92	140	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-F12-D132		25	25	12	132	230	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-F12-D220		25	25	12	220	500	150	34	26	SCAM060200H	TH50LH	5.5	0.69	•	•
GTFR/L2525M-F12-D300		25	25	12	300	1100	150	34	26	SCAM060200H	TH50LH	5.5	0.69	•	•

Примечания: SCAM060200H обозначает M6X20

Подрезные державки — линейные

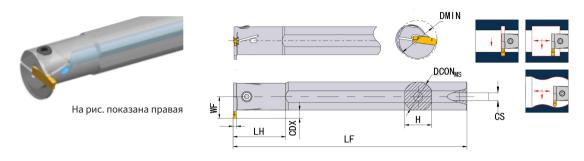

	Код адаптера			Р	азмерь	ы (мм)				Винт	Ключ	Рекомен- дуемый крутя-	Bec	Нал	ичие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	DAXIN	DAXX	LF	LH	WF			щий момент (Н.м)	(кг)	R	L
GTFR/L2525M-G12-D40		25	25	12	40	70	150	34	26	SCAM060200H	TH50LH	5.5	0.71	•	•
GTFR/L2525M-G12-D60		25	25	12	60	95	150	34	26	SCAM060200H	TH50LH	5.5	0.71	•	•
GTFR/L2525M-G12-D85	G	25	25	12	85	130	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-G12-D120		25	25	12	120	180	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-G12-D175		25	25	12	175	500	150	34	26	SCAM060200H	TH50LH	5.5	0.70	•	•
GTFR/L2525M-H12-D40	н -	25	25	12	40	70	150	35	26	SCAM060200H	TH50LH	5.5	0.71	•	•
GTFR/L2525M-H12-D58		25	25	12	58	100	150	35	26	SCAM060200H	TH50LH	5.5	0.71	•	•
GTFR/L2525M-H12-D88		25	25	12	88	180	150	35	26	SCAM060200H	TH50LH	6.0	0.70	•	•
GTFR/L2525M-H12-D168		25	25	12	168	400	150	35	26	SCAM060200H	TH50LH	6.0	0.70	•	•
GTFR/L2525M-J15-D75		25	25	15	75	115	150	39	26	SCAM080260H	TH60LH	7.0	0.70	•	•
GTFR/L2525M-J15-D110		25	25	15	110	150	150	39	26	SCAM080260H	TH60LH	7.0	0.70	•	•
GTFR/L2525M-J15-D140		25	25	15	140	1100	150	39	26	SCAM080260H	TH60LH	7.0	0.69	•	•
GTFR/L2525M-J24-D50		25	25	24	50	80	150	55	26	SCAM080260H	TH60LH	7.0	0.69	•	•
GTFR/L2525M-J24-D75	J	25	25	24	75	115	150	55	26	SCAM080260H	TH60LH	7.0	0.68	•	•
GTFR/L2525M-J24-D110	J –	25	25	24	110	150	150	55	26	SCAM080260H	TH60LH	7.0	0.68	•	•
GTFR/L2525M-J24-D140		25	25	24	140	1100	150	55	26	SCAM080260H	TH60LH	7.0	0.67	•	•
GTFR/L3225P-J24-D110		32	25	24	110	150	170	55	26	SCAM080260H	TH60LH	7.0	0.98	0	0
GTFR/L3225P-J24-D140		32	25	24	140	540	170	55	26	SCAM080260H	TH60LH	7.0	1.24	•	0

Примечания: SCAM060200H обозначает М6Х20

для отрезки и

Державки для отрезки и обработки канавок — серия GT

Подрезные державки — вертикальные

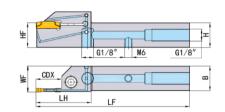


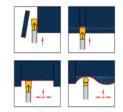
	Код адаптера режущего			F	азмері	ы (мм)				Винт	Ключ	Рекомен-	Bec	Налі	ичие
Код заказа	инстру- мента SSC	H=HF	В	CDX	DAXIN	DAXX	LF	LH	WF	P		крутящий момент (Н.м)	(кг)	R	L
GTFPR/L2525M-E09-D70	Е Е	25	25	9	70	100	150	24	35.5	SCAM060200H	TH50LH	5.5	0.78	•	0
GTFPR/L2525M-E09-D110		25	25	9	110	170	150	24	35.5	SCAM060200H	TH50LH	5.5	0.78	•	•
GTFPR/L2525M-F12-D40		25	25	12	40	60	150	24	38.5	SCAM060200H	TH50LH	5.5	0.77	•	•
GTFPR/L2525M-F12-D52		25	25	12	52	72	150	24	38.5	SCAM060200H	TH50LH	5.5	0.77	•	•
GTFPR/L2525M-F12-D64		25	25	12	64	100	150	24	38.5	SCAM060200H	TH50LH	5.5	0.77	•	•
GTFPR/L2525M-F12-D92	F	25	25	12	92	140	150	24	38.5	SCAM060200H	TH50LH	5.5	0.77	•	•
GTFPR/L2525M-F12-D132	F	25	25	12	132	230	150	24	38.5	SCAM060200H	TH50LH	5.5	0.76	•	0
GTFPR/L2525M-F12-D220		25	25	12	220	500	150	24	38.5	SCAM060200H	TH50LH	5.5	0.76	•	0
GTFPR/L2525M-F12-D300		25	25	12	300	1100	150	24	38.5	SCAM060200H	TH50LH	5.5	0.76	•	0
GTFPR/L2525M-G15-D70		25	25	15	70	100	150	24	41.5	SCAM060200H	TH50LH	5.5	0.79	•	0
GTFPR/L2525M-G15-D110	G	25	25	15	110	170	150	24	41.5	SCAM060200H	TH50LH	5.5	0.78	•	0
GTFPR/L2525M-H18-D168	Н	25	25	18	168	400	150	32	44.5	SCAM060200H	TH50LH	6.0	0.78	•	0
GTFPR/L2525M-J20-D50		25	25	20	50	80	150	32	46.5	SCAM080260H	TH60LH	7.0	0.79	•	0
GTFPR/L2525M-J20-D75		25	25	20	75	115	150	32	46.5	SCAM080260H	TH60LH	7.0	0.78	•	0
GTFPR/L2525M-J20-D110	J .	25	25	20	110	150	150	32	46.5	SCAM080260H	TH60LH	7.0	0.78	•	0
GTFPR/L2525M-J20-D140		25	25	20	140	630	150	32	46.5	SCAM080260H	TH60LH	7.0	0.76	•	0
GTFPR/L3225P-J20-D110		32	25	20	110	150	170	32	46.5	SCAM080260H	TH60LH	7.0	1.12	•	0
GTFPR/L3225P-J20-D140		32	25	20	140	630	170	32	46.5	SCAM080260H	TH60LH	7.0	1.10	•	0

Примечания: SCAM060200H обозначает M6X20

Державки для отрезки и обработки канавок — серия GT

Державка для расточной обработки

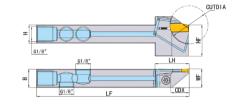


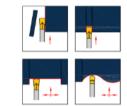

	Код адаптера		Р	азмеј	ры (мм)			Винт	Ключ	Рекомен- дуемый крутя-	Bec	Нал	
Код заказа	режущего инстру- мента SSC	DMIN	DCON _{MS}	CDX	WF	LF	LH	Н			щий момент (Н.м)	(кг)	R	L
GTIR/L3220Q-B05	В	32	20	5	15.0	180	30	19	SI60M040140-05718H ^①	TT15PH ²	3.5	0.37	•	•
GTIR/L3220Q-C06		32	20	6	16.0	180	30	19	SI60M040140-05718H ^①	TT15PH ²	3.5	0.37	•	•
GTIR/L3225R-C06	С	32	25	6	18.5	200	35	24	SCAM040160H	TH30LH	3.5	0.65	•	•
GTIR/L4032S-C09		40	32	9	25.0	250	45	31	SCAM040160H	TH30LH	4.0	1.40	•	•
GTIR/L3220Q-E06		32	20	6	16.0	180	30	19	SI60M040140-05718H ^①	TT15PH ²	4.0	0.37	•	•
GTIR/L3225R-E09	- - Е	32	25	9	21.5	200	35	24	SCAM050160H	TH40LH	4.5	0.64	•	•
GTIR/L4032S-E09	- Е	40	32	9	25.0	250	45	31	SCAM050160H	TH40LH	4.5	1.40	•	•
GTIR/L5040T-E12		50	40	12	32.0	300	55	39	SCAM050200H	TH40LH	4.5	2.61	•	•
GTIR/L3225R-F09		32	25	9	21.5	200	35	24	SCAM050160H	TH40LH	4.5	0.63	•	•
GTIR/L4032S-F10	_	40	32	10	26.0	250	45	31	SCAM060160H	TH50LH	5.0	1.39	•	•
GTIR/L5040T-F12	F	50	40	12	32.0	300	55	39	SCAM060200H	TH50LH	5.0	2.61	•	•
GTIR/L6050U-F13		60	50	13	38.0	350	65	49	SCAM060250H	TH50LH	5.0	4.93	•	•
GTIR/L3225R-G09		32	25	9	21.5	200	35	24	SCAM050160H	TH40LH	4.5	0.64	•	•
GTIR/L4032S-G11	-	40	32	11	27.0	250	45	31	SCAM060160H	TH50LH	5.0	1.38	•	•
GTIR/L5040T-G12	G	50	40	12	32.0	300	55	39	SCAM060200H	TH50LH	5.5	2.61	•	•
GTIR/L6050U-G13		60	50	13	38.0	350	65	49	SCAM060250H	TH50LH	5.5	4.93	•	•
GTIR/L5040T-H12		50	40	12	32.0	300	55	39	SCAM060200H	TH50LH	5.5	2.61	•	•
GTIR/L6050U-H13	Н	60	50	13	38.0	350	65	49	SCAM060250H	TH50LH	5.5	4.93	•	•

Примечания: SCAM040160H обозначает M4X16 ① Винт с звездообразным шлицем ② Флажковый ключ

Проходные державки — с внутренним охлаждением при высоком давлении

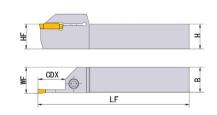

	Код адаптера		i	Размер	ы (мм)		Винт	Ключ	Рекомен- дуемый	Bec		ли- ие
Код заказа	режущего инстру- мента SSC	H=HF	В	CDX	LF	LH	WF	P		крутящий момент (Н.м)	(кг)	R	L
GTER/L2020K-E20-C	Е	20	20	20	125	44.8	21	SCAM050200H	TH40LH	4.0	0.32	•	•
GTER/L2525M-E20-C		25	25	20	150	44.8	26	SCAM060200H	TH50LH	4.5	0.61	•	•
GTER/L2525M-F25-C	F	25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.59	•	•
GTER/L2525M-G25-C	G	25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.59	•	•
GTER/L2525M-H25-C	Н	25	25	25	150	47	26	SCAM060200H	TH50LH	4.5	0.60	•	•
GTER/L3232P-J24-C	J	32	32	24	170	54.8	33	SCAM060200H	TH50LH	7.0	1.19	•	•

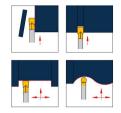

Примечания: SCAM060200H обозначает M6X20


Рекомендуемое макс. давление охлаждающей жидкости 150 баров

Проходные державки — с внутренним охлаждением при высоком давлении

Специально для автоматических токарных станков

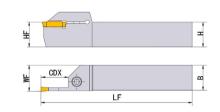


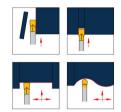

	Код адапте- ра ре-			Pa	змеры (м	им)			Винт	Ключ	Рекомен- дуемый крутя-	Bec	Нал чи	
Код заказа	жущего инстру- мента SSC	H=HF	В	CDX	CUTDIA	LF	LH	WF			щий момент (Н.м)	(кг)	R	L
GTER/L1212H-CD24-SC		12	12	12	24	100	22.5	12.2	SI60M040160-05718H	TT15PH	3.0	0.10	•	•
GTER/L1616H-CD32-SC		16	16	16	32	100	26.5	16.2	SI60M040160-05718H	TT15PH	3.0	0.17	•	•
GTER/L1212H-ED24-SC	Е	12	12	12	24	100	22.5	12.3	SI60M040160-05718H	TT15PH	3.0	0.10	•	•
GTER/L1616H-ED32-SC		16	16	16	32	100	26.5	16.3	SI60M040160-05718H	TT15PH	3.0	0.17	•	•

Примечания: SI60M040160* обозначает M4X16 Рекомендуемое макс. давление охлаждающей жидкости 150 баров

Державка для проходной обработки

		P	азмерь	ы (мм)		Комплектующая	Винт	Ключ	Bec	Наличие	
Код заказа	H=HF	В	CDX	LF	WF	пластина			(кг)	R	L
GKER/L1616-2T14	16	16	14	100	17		SCAM050200H	TH40LH	0.20	•	•
GKER/L2020-2T14	20	20	14	125	21	GKD20···	SCAM050200H	TH40LH	0.39	•	•
GKER/L2525-2T14	25	25	14	150	26		SCAM060250H	TH50LH	0.74	•	•
GKER/L1616-2.5T16	16	16	16	100	17	GKD25···	SCAM050200H	TH40LH	0.20	•	0
GKER/L2020-2.5T16	20	20	16	125	21		SCAM050200H	TH40LH	0.39	•	•
GKER/L2525-2.5T16	25	25	16	150	26		SCAM060250H	TH50LH	0.74	•	•
GKER/L1616-3T10	16	16	10	100	17		SCAM050200H	TH40LH	0.20	•	0
GKER/L1616-3T18	16	16	18	100	17		SCAM050200H	TH40LH	0.20	•	•
GKER/L2020-3T10	20	20	10	125	21		SCAM050200H	TH40LH	0.39	•	•
GKER/L2020-3T18	20	20	18	125	21		SCAM050200H	TH40LH	0.39	•	•
GKER/L2525-3T10	25	25	10	150	26		SCAM060250H	TH50LH	0.74	•	•
GKER/L2525-3T18	25	25	18	150	26		SCAM060250H	TH50LH	0.74	•	•
GKER/L3225-3T18	32	25	18	170	26		SCAM060250H	TH50LH	1.07	•	•
GKER/L3232-3T18	32	32	18	170	33		SCAM060250H	TH50LH	1.37	•	•
GKER/L2020-4T10	20	20	10	125	21		SCAM050200H	TH40LH	0.39	•	•
GKER/L2020-4T18	20	20	18	125	21		SCAM050200H	TH40LH	0.39	•	•
GKER/L2525-4T10	25	25	10	150	26	GKD40···	SCAM060250H	TH50LH	0.74	•	•
GKER/L2525-4T18	25	25	18	150	26	GND40	SCAM060250H	TH50LH	0.74	•	•
GKER/L3225-4T18	32	25	18	170	26		SCAM060250H	TH50LH	1.07	•	•
GKER/L3232-4T18	32	32	18	170	33		SCAM060250H	TH50LH	1.37	•	•
GKER/L2020-5T15	20	20	15	125	21		SCAM050200H	TH40LH	0.39	0	0
GKER/L2020-5T23	20	20	23	125	21	GKD50···	SCAM050200H	TH40LH	0.39	•	•
GKER/L2525-5T15	25	25	15	150	26	GNDSU	SCAM060250H	TH50LH	0.74	•	•
GKER/L2525-5T23	25	25	23	150	26		SCAM060250H	TH50LH	0.74	•	•

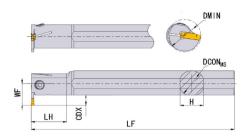

Примечания: SCAM050200H обозначает М5Х20

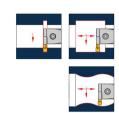

для отрезки и

Державки для отрезки и обработки канавок — серия GK

Державка для проходной обработки

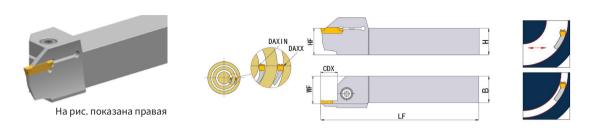
Код заказа		Р	азмер	ы (мм)		Комплектующая пластина	Винт	Ключ	Bec	Наличие		
	H=HF	В	CDX	LF	WF				(кг)	R	L	
GKER/L3225-5T23	32	25	23	170	26		SCAM060250H	TH50LH	1.07	•	•	
GKER/L3232-5T15	32	32	15	170	33	GKD50···	SCAM060250H	TH50LH	1.37	•	•	
GKER/L3232-5T23	32	32	23	170	33		SCAM060250H	TH50LH	1.37	•	•	
GKER/L2020-6T23	20	20	23	125	21		SCAM050200H	TH40LH	0.39	•	0	
GKER/L2525-6T15	25	25	15	150	26		SCAM060250H	TH50LH	1.37	•	•	
GKER/L2525-6T23	25	25	23	150	26	GKD60···	SCAM060250H	TH50LH	0.74	•	•	
GKER/L3225-6T23	32	25	23	170	26		SCAM060250H	TH50LH	1.07	•	•	
GKER/L3232-6T23	32	32	23	170	33		SCAM050200H	TH50LH	1.37	•	•	
GKER/L2525-8T15	25	25	15	150	26.5		SCAM060250H	TH50LH	0.74	0	0	
GKER/L2525-8T28	25	25	28	150	26.5	GKD80···	SCAM060250H	TH50LH	0.74	•	0	
GKER/L3232-8T28	32	32	28	170	33.5	-	SCAM060250H	TH50LH	1.37	•	•	


Примечания: SCAM060250H обозначает M6X25


G Режущие и для отрезн обработки

Державки для отрезки и обработки канавок — серия GK

Державка для расточной обработки

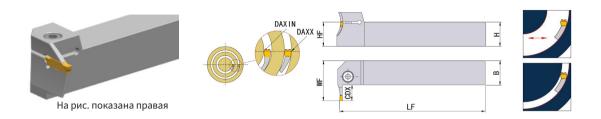


Кол ээхэээ		ı	Разме	ры (мм)			Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	DMIN	DCON _{MS}	CDX	WF	LF	LH	Н	тующая пластина			(кг)	R	L
GKIR/L2016-2T04	20	16	4	12	125	35	15		SCAM040100H	TH30LH	0.20	•	•
GKIR/L2520-2T05	25	20	5	14.5	150	45	18	GKD20···	SCAM040160H	TH30LH	0.37	•	•
GKIR/L2925-2T05	29	25	5	17	200	45	23		SCAM050200H	TH40LH	0.77	•	•
GKIR/L2520-2.5T05	25	20	5	14.5	150	45	18	CVD25	SCAM040160H	TH30LH	0.37	•	0
GKIR/L2925-2.5T05	29	25	5	17	200	45	23	GKD25···	SCAM050200H	TH40LH	0.77	•	•
GKIR/L2520-3T06	25	20	6	15.5	150	45	18		SCAM040160H	TH30LH	0.37	•	•
GKIR/L3125-3T06	31	25	6	18.5	200	45	23	GKD30···	SCAM050200H	TH40LH	0.77	•	•
GKIR/L3732-3T06	37	32	6	21.5	250	65	30		SCAM050200H	TH40LH	1.58	•	•
GKIR/L2520-4T06	25	20	6	15.5	150	45	18		SCAM040160H	TH30LH	0.37	•	•
GKIR/L3125-4T06	31	25	6	18.5	200	45	23	GKD40···	SCAM050200H	TH40LH	0.77	•	•
GKIR/L3732-4T06	37	32	6	21.5	250	65	30		SCAM050200H	TH40LH	1.58	•	•
GKIR/L3125-5T08	31	25	8	19.5	200	45	23	CVDEO	SCAM050200H	TH40LH	0.77	•	•
GKIR/L3732-5T08	37	32	8	21.5	250	65	30	GKD50···	SCAM050200H	TH40LH	1.58	•	•
GKIR/L3125-6T08	31	25	8	19.5	200	45	23	CKDCO	SCAM050200H	TH40LH	0.77	•	0
GKIR/L3732-6T08	37	32	8	21.5	250	65	30	GKD60···	SCAM050200H	TH40LH	1.58	•	•
GKIR/L3732-8T10	37	32	10	23.4	250	65	30	CKD00	SCAM050200H	TH40LH	1.58	0	0
GKIR/L4540-8T10	45	40	10	27.2	300	70	37	GKD80···	SCAM050200H	TH40LH	2.96	0	0

Примечания: SCAM040100H обозначает M4X10

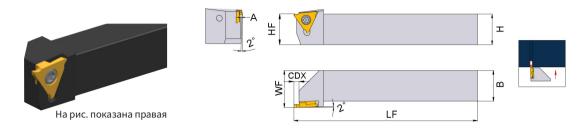
Державки для отрезки и обработки канавок — серия GK

Подрезные державки — линейные



16			Pa	змеры (мм)			Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	H=HF	В	CDX	DAXIN	DAXX	LF	WF	тующая пластина			(кг)	R	L
GKFR/L2525-2T12D75	25	25	12	75	100	150	26	CKD30	SCAM060200H	TH50LH	0.72	0	0
GKFR/L2525-2T12D90	25	25	12	90	150	150	26	GKD20···	SCAM060200H	TH50LH	0.74	•	0
GKFR/L2525-3T15D68	25	25	15	68	100	150	26	GKD30···	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-3T15D90	25	25	15	90	160	150	26	GVD30	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2020-4T15D62	20	20	15	62	120	150	26		SCAM050160H	TH40LH	0.39	0	•
GKFR/L2525-4T15D62	25	25	15	62	120	150	26	CKD40	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-4T15D112	25	25	15	112	200	150	26	GKD40···	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-4T25D62	25	25	25	62	120	150	26		SCAM060200H	TH50LH	0.74	•	0
GKFR/L2525-5T10D150	25	25	10	150	300	150	26		SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-5T25D68	25	25	25	68	95	150	26	GKD50···	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-5T25D85	25	25	25	85	130	150	26		SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-6T25D68	25	25	25	68	100	150	26	CKDCO	SCAM060200H	TH50LH	0.74	•	0
GKFR/L2525-6T25D88	25	25	25	88	180	150	26	GKD60···	SCAM060200H	TH50LH	0.74	•	•
GKFR/L2525-8T25D45	25	25	25	45	80	150	26	GKD80···	SCAM060200H	TH50LH	0.74	•	0

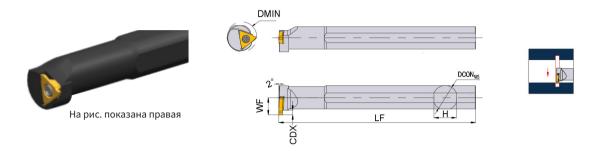
Примечания: SCAM060200H обозначает M6X20


Подрезные державки — вертикальные

Код заказа			Pa	змеры (мм)			Комплек- тующая пластина	Винт	Ключ	Bec	Нали	1чие
	H=HF	В	CDX	DAXIN	DAXX	LF	WF				(кг)	R	L
GKFPR/L2525-4T15D60	25	25	15	60	120	150	41	CKD40	SCAM060200H	TH50LH	0.74	•	•
GKFPR/L2525-4T15D112	25	25	15	112	200	150	41	GKD40···	SCAM060200H	TH50LH	0.74	•	•

Примечания: SCAM060200H обозначает M6X20

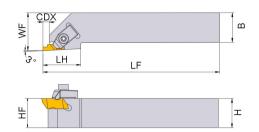
Державка для проходной обработки



Код заказа			Разм	еры (мм	1)		Комплектующая	Винт	Ключ	Bec	Наличие	
	H=HF	В	CDX	LF	WF	А	пластина			(кг)	R	L
GBER/L2020K3	20	20	2.5	125	25	_	GB3···	SI60M035120-05316H	TT15PH	0.39	•	•
GBER/L2525M3	25	25	2.5	150	30	_	GB3···	SI60M035120-05316H	TT15PH	0.74	•	•
GBER/L2020K415	20	20	4.0	125	25	1.0	GB4···(1.0≤W<2.5)	SI60M050120-07217H	TT20PH	0.39	•	•
GBER/L2525M415	25	25	4.0	150	30	1.0	GB4···(1.0≤W<2.5)	SI60M050120-07217H	TT20PH	0.74	•	•
GBER/L2020K425	20	20	4.5	125	25	2.0	GB4···(2.5≤W<3.3)	SI60M050120-07217H	TT20PH	0.39	•	0
GBER/L2525M425	25	25	4.5	150	30	2.0	GB4···(2.5≤W<3.3)	SI60M050120-07217H	TT20PH	0.74	•	0
GBER/L2020K435	20	20	5.5	125	25	3.0	GB4···(3.3≤W<4.3)	SI60M050120-07217H	TT20PH	0.39	0	0
GBER/L2525M435	25	25	5.5	150	30	3.0	GB4···(3.3≤W<4.3)	SI60M050120-07217 H	TT20PH	0.74	•	0

Примечания: SI60M 035120* обозначает M3.5X12

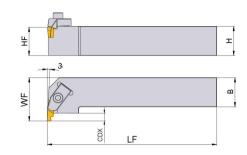
Державка для расточной обработки


Код заказа		Pa	азмеры	(мм)			Комплек- тующая пластина	Винт	Ключ	Bec	Наличие	
	DMIN	DCON _{MS}	CDX	WF	LF	Н				(кг)	R	L
GBIR/L2620Q3	26	20	3	13	180	18	GB3···	SI60M035120-05316H	TT15PH	0.44	•	•
GBIR/L3525R4	35	25	4.5	17.5	200	23	GB4···	SI60M050120-07217H	TT20PH	0.77	•	•

Примечания: SI60M035120* обозначает M3.5X12 Правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок.

Державки для отрезки и обработки канавок — серия GN

Проходные державки — линейные

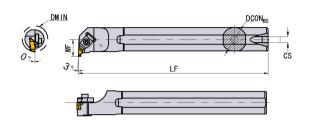


			Разм	еры (ми	۸)		Винт Комплек-		Прижимная планка	Ключ	Bec	На-
Код заказа	H=HF	В	CDX	LF	WF	LH	пластина				(кг)	ли- чие
GNSR1616H2	16	16	3.5	100	20	19		SCAM040120H	CAN02RH	TH30LH	0.20	•
GNSR2020K2	20	20	3.5	125	25	19	GN.2R	SCAM040120H	CAN02RH	TH30LH	0.38	0
GNSR2525M2	25	25	3.5	150	32	19		SCAM040120H	CAN02RH	TH30LH	0.74	0
GNSL1616H2	16	16	3.5	100	20	19		SCAM040120H	CAN02LH	TH30LH	0.20	0
GNSL2020K2	20	20	3.5	125	25	19	GN.2L	SCAM040120H	CAN02LH	TH30LH	0.38	0
GNSL2525M2	25	25	3.5	150	32	19		SCAM040120H	CAN02LH	TH30LH	0.74	0
GNSR2020K3	20	20	5.3	125	25	32	CN 2D	SCAM050200H	CAN03RH	TH40LH	0.39	•
GNSR2525M3	25	25	5.3	150	32	32	GN.3R	SCAM050200H	CAN03RH	TH40LH	0.74	•
GNSL2020K3	20	20	5.3	125	25	32	GN.3L	SCAM050200H	CAN03LH	TH40LH	0.39	0
GNSL2525M3	25	25	5.3	150	32	32	GIN.3L	SCAM050200H	CAN03LH	TH40LH	0.74	•

Примечания: SCAM040120H обозначает M4X12 Когда державка используется вместе с пластинами GNGDP, размер CDX зависит от пластин.

Проходные державки — вертикальные

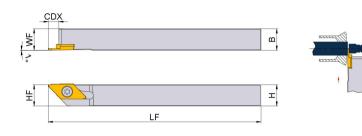
		Pá	азмер	ы (мм)		Комплек-	Винт	Прижимная планка Ключ		Bec	На-
Код заказа	H=HF	В	CDX	LF	WF	тующая пластина				(кг)	ли- чие
GNER2020K2	20	20	3.5	125	25	GN.2L	SCAM040120H	CAN02LH	TH30LH	0.38	0
GNER2525M2	25	25	3.5	150	32	GN.ZL	SCAM040120H	CAN02LH	TH30LH	0.39	0
GNEL2020K2	20	20	3.5	125	25	GN.2R	SCAM040120H	CAN02RH	TH30LH	0.38	0
GNEL2525M2	25	25	3.5	150	32	GN.ZR	SCAM040120H	CAN02RH	TH30LH	0.39	0
GNER2525M3	25	25	5.3	150	32	GN.3L	SCAM050200H	CAN03LH	TH40LH	0.39	0
GNEL2525M3	25	25	5.3	150	32	GN.3R	SCAM050200H	CAN03RH	TH40LH	0.39	0


Примечания: SCAM040120H обозначает M4X12
① Правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок.
② Когда державка используется вместе с пластинами GNGDP,

размер CDX зависит от пластин.

Державки для отрезки и обработки канавок — серия GN

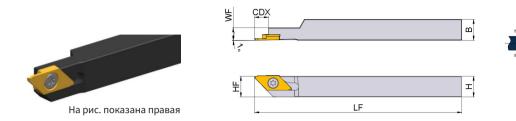
Державка для расточной обработки


		Разм	іеры (мм)		Комплек-	Винт	Прижимная планка	Ключ	Bec	На-
Код заказа	DMIN	DCON _{MS}	WF	LF	тующая пластина СS		P			(кг)	ли- чие
GNAR20Q2	26	20	13	180	1/8-27 NPT	GN.2L	SCAM040120H	CAN02LH	TH30LH	0.44	0
GNAR25R2	34	25	17	200	1/4-18 NPT	GIN.ZL	SCAM040120H	CAN02LH	TH30LH	0.77	0
GNAL20Q2	26	20	13	180	1/8-27 NPT	GN.2R	SCAM040120H	CAN02RH	TH30LH	0.44	•
GNAL25R2	34	25	17	200	1/4-18 NPT	GIV.ZR	SCAM040120H	CAN02RH	TH30LH	0.77	0
GNAR25R3	34	25	17	200	1/4-18 NPT	GN.3L	SCAM050200H	CAN03LH	TH40LH	0.77	0
GNAL25R3	34	25	17	200	1/4-18 NPT	GN.3R	SCAM050200H	CAN03RH	TH40LH	0.77	0

размер CDX зависит от пластин.

Примечания: SCAM040120H обозначает M4X12
① Правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок.
② Когда державка используется вместе с пластинами GNGDP,

Державка для проходной обработки Специально для автоматических токарных станков

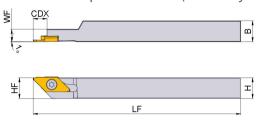

W			Pa	змеры (мм)			Комплектую-	оч На		ичие		
Код заказа	H=HF	В	CDX	CUTDIA	LF	WF	щая пластина			(кг)	R	L
GSTR/L1010JK3	10	10	6	12	120	10		SSAM045095Q	TT10PQ	0.09	•	0
GSTR/L1212JK3	12	12	6	12	120	12	GSTC3R/L**	SSAM045095Q	TT10PQ	0.14	•	•
GSTR/L1616JK3	16	16	6	12	120	16	GSTCSR/L	SSAM045095Q	TT10PQ	0.24	•	0
GSTR/L2020JK3	20	20	6	12	120	20		SSAM045095Q	TT10PQ	0.40	•	0
GSTR/L1010JK4	10	10	8	16	120	10		SSAM045095Q	TT10PQ	0.09	•	0
GSTR/L1212JK4	12	12	8	16	120	12	GSTC4R/L**	SSAM045095Q	TT10PQ	0.14	•	•
GSTR/L1616JK4	16	16	8	16	120	16	GSTC4K/L	SSAM045095Q	TT10PQ	0.24	•	0
GSTR/L2020JK4	20	20	8	16	120	20		SSAM045095Q	TT10PQ	0.40	•	0

Примечания: SSAM045095Q обозначает M4.5X9.5

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

Державки для отрезки и обработки канавок — серия GST

Державка для проходной обработки Для вторичных шпинделей автоматических токарных станков



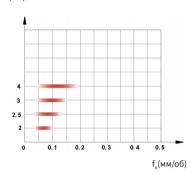
			Pa	змеры (мм)			Комплектую-	Винт Ключ		Bec	Налі	ичие
Код заказа	H=HF	В	CDX	CUTDIA	LF	WF	щая пластина			(кг)	R	L
GSTR/L1010JK3-RS	10	10	6	12	120	7.2	CCTC2D/I**	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK3-RS	12	12	6	12	120	7.2	GSTC3R/L**	SSAM045070Q	TT10PQ	0.14	•	0
GSTR/L1010JK4-RS	10	10	8	16	120	7.2	GSTC4R/L**	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK4-RS	12	12	8	16	120	7.2	GSTC4R/L	SSAM045070Q	TT10PQ	0.14	•	•

Примечания: SSAM045070Q обозначает M4.5X7

Державка для проходной обработки Для вторичных шпинделей автоматических токарных станков (используются тонкие пластины)

			Pa	змеры (мм)			Комплектую-			Bec	Налі	ичие
Код заказа	H=HF	В	CDX	CUTDIA	LF	WF	щая пластина			(кг)	R	L
GSTSR/L1010JKA2-RS	10	10	6	12	120	5	CCTC A 2 D / I * *	SSAM040046Q	TT10PQ	0.09	•	•
GSTSR/L1212JKA2-RS	12	12	6	12	120	5	GSTSA2R/L**	SSAM040046Q	TT10PQ	0.14	•	•
GSTSR/L1010JKB2-RS	10	10	8	16	120	5	GSTSB2R/L**	SSAM040046Q	TT10PQ	0.09	•	•
GSTSR/L1212JKB2-RS	12	12	8	16	120	5	G313DZR/L	SSAM040046Q	TT10PQ	0.14	•	•

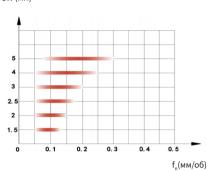
Примечания: SSAM040046Q обозначает M4.0X4.6


О Режущие инструмент для отрезки и обработки канавок

Рекомендуемые параметры резания Серия GT

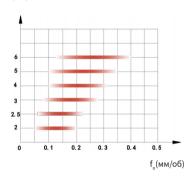
GT-FC

⊙ Радиальная подача


СW (мм)

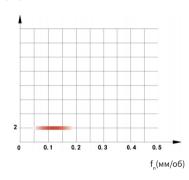
GT-MC

⊙ Радиальная подача


СW (мм)

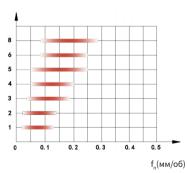
GT-RC

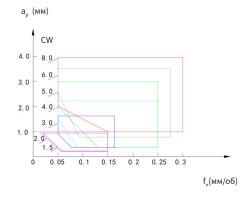
⊙ Радиальная подача


СW (мм)

GT-OC

⊙ Радиальная подача

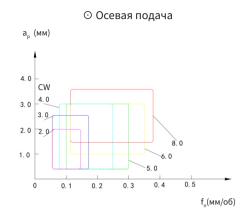

СW (мм)


GT-FG

⊙ Радиальная подача

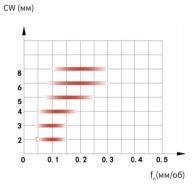
СW (мм)

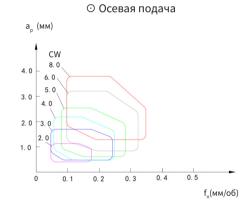

Осевая подача



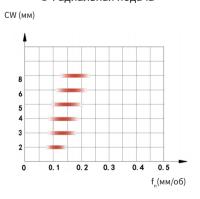
Режущие инструменты для отрезки и

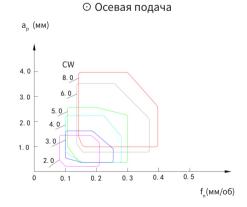
Рекомендуемые параметры резания _{Серия GT}


GT-MG



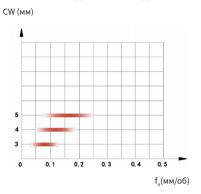
GT-FT

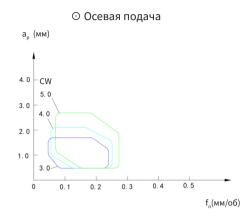




GT-MT

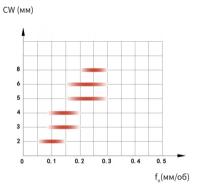
⊙ Радиальная подача

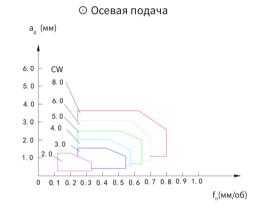



Для отрезки и обработки канавок

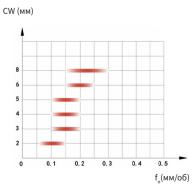
Рекомендуемые параметры резания Серия GT

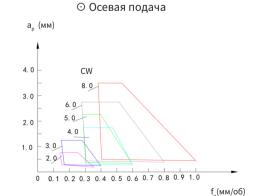
GT-OT


⊙ Радиальная подача



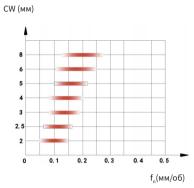
GT-MR

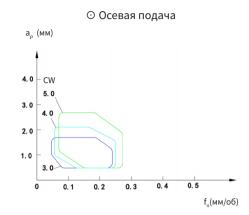

⊙ Радиальная подача



GT-OR

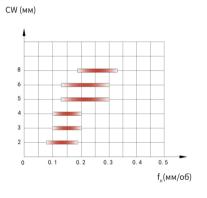
⊙ Радиальная подача

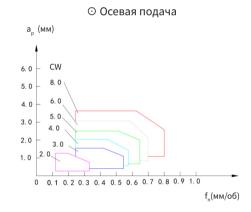




Рекомендуемые параметры резания _{Серия GK}

GK-MT


⊙ Радиальная подача



GK-MR

⊙ Радиальная подача

Рекомендуемые параметры резания

Серия GB

				f _n (мм/об)									
ISO	Материал заготовки		CW (MM)										
		0.33-1.0	1.0-2.0	2.5-3.0	3.3-4.0	4.0-4.3							
D	Углеродистая сталь	①,0.03~0.08	①,0.04~0.09 ②,0.04~0.09	①,0.05~0.10 ②,0.05~0.10	①,0.05~0.12 ②,0.05~0.10	①,0.05~0.12 ②,0.05~0.10							
P	Легированная сталь	①,0.03~0.07	①,0.04~0.08 ②,0.04~0.08	①,0.05~0.09 ②,0.05~0.09	①,0.05~0.10 ②,0.05~0.10	①,0.05~0.10 ②,0.05~0.10							
M	Нержавеющая сталь	①,0.03~0.07	①,0.04~0.08 ②,0.04~0.08	①,0.05~0.09 ②,0.05~0.09	①,0.05~0.10 ②,0.05~0.10	①,0.05~0.10 ②,0.05~0.10							
K	Чугун	①,0.03~0.08	①,0.04~0.09 ②,0.04~0.09	①,0.05~0.10 ②,0.05~0.10	①,0.05~0.12 ②,0.05~0.10	①,0.05~0.12 ②,0.05~0.10							

① Радиальная подача ② Осевая подача

Серия GN

CW (MM)	f _n (мм/об)
0.50-1.50	0.08 (0.03-0.12)
1.50-2.50	0.10 (0.04-0.16)
2.50-3.50	0.12 (0.05-0.20)
3.50-4.80	0.14 (0.05-0.25)

Серия GST

ISO	Материал заготовки	Твердость (НВ)	Серия	f _n (мм/об)
D	C=0.51	≤300	GSTC	0.02(0.01-0.03)
P	Сталь	≥300	GSTS	0.02(0.01-0.03)
M	Hanvaraiawa a azazi	< 200	GSTC	0.015(0.01-0.02)
141	Нержавеющая сталь	≤300	GSTS	0.015(0.01-0.02)

Рекомендуемые параметры резания

		_					Скорость Vc (м,	резания /мин.)				
ISO	Матери- ал заго- товки	Твер- дость (НВ)	GM1230	GP1225	GP1120	GA4230	GA4330	GAT7125	GAT7115	GST7135	GK1115	GST7115
	Углеро- дистая сталь	80-250	100 (60-165)	120 (80-220)	140 (100-250)	110 (70-180)	110 (70-180)	100 (60-160)	105 (70-170)	115 (80-190)	150 (110-260)	120 (90-200)
	Низколе- гирован- ная сталь	140-260	95 (45-155)	110 (60-180)	130 (80-230)	105 (50-165)	105 (50-165)	95 (45-150)	100 (55-160)	110 (60-170)	140 (90-240)	115 (70-185)
P	Высоко- легиро- ванная сталь	180-300	90 (45-145)	110 (60-180)	120 (80-220)	100 (50-150)	100 (50-150)	90 (45-140)	95 (50-150)	105 (60-160)	130 (80-230)	110 (65-170)
	Литая сталь	180-300	80 (40-125)	110 (60-180)	110 (45-180)	90 (40-130)	90 (40-130)	80 (40-120)	85 (40-120)	95 (40-150)	115 (50-190)	100 (40-150)
M	Феррит- ная Мартен- ситная	150-270				100 (50-150)	100 (50-150)	90 (45-130)	95 (50-110)	105 (60-160)		110 (65-170)
141	Аусте- нитная	150-270				105 (50-165)	105 (50-165)	95 (45-140)	100 (50-165)	110 (60-165)		115 (70-180)
	Ковкий чугун	150-230			130 (95-230)	105 (65-175)	105 (65-175)			110 (75-185)	140 (100-240)	115 (85-195)
K	Серый чугун	150-230			120 (95-215)	100 (55-160)	100 (55-160)			105 (65-165)	130 (100-230)	110 (75-180)
	Чугун с шаро- видным графи- том	160-260			110 (70-210)	95 (45-145)	95 (45-145)			100 (55-155)	120 (70-220)	105 (60-165)
C	Жаро- прочные сплавы	130-400				30 (15-60)	30 (15-60)			35 (15-60)		40 (30-70)
S	Тита- новый сплав	130-400				30 (20-60)	30 (20-60)			35 (20-60)		40 (35-70)

H

Режущие инструменты для нарезания резьбы

Режущие инструментыдля нарезания резьбы

Правила обозначения моделей токарных пластин для нарезания резьбы

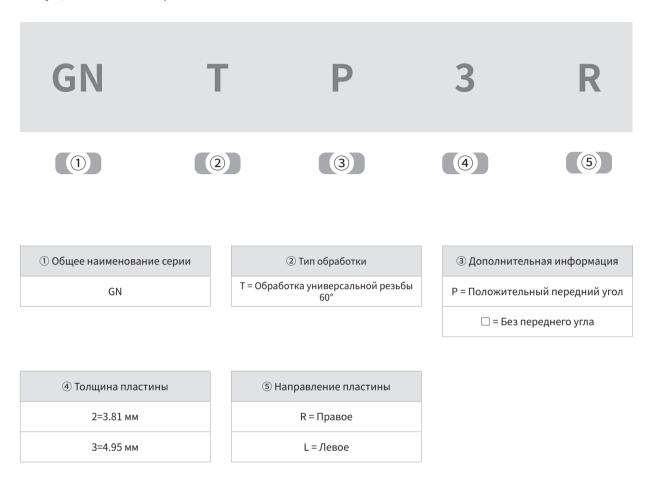
E R 1.50 ISO - TC 16

① Pas	① Размеры пластины							
Код	ІС(мм)							
08	5							
11	6.35							
16	9.525							
22	12.7							
27	15.875							

② Категории резьбы
E = Наружная резьба
I = Внутренняя резьба
□ = Внутренняя и наружная резьба

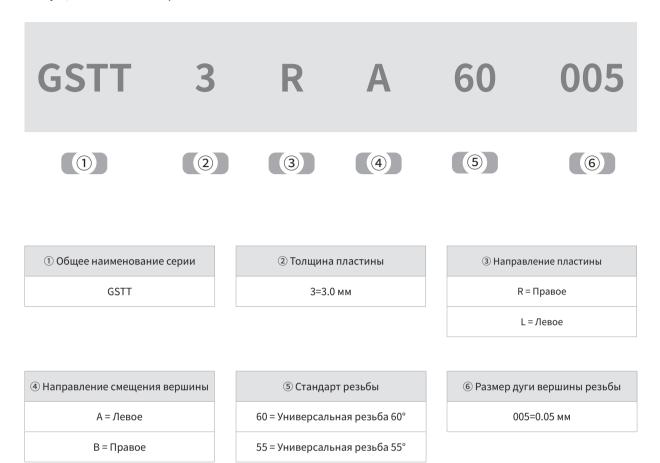
③ Направление пластины
R = Правое
L = Левое
□ = Левый и правый инструмент

④ Шаг резьбы			
Диапазон шага полной резьбы			
ММ	TPI		
0.35-5.0	72-5		
Диапазон шага неполной резьбы			
Код	ММ	TPI	
Α	0.5-1.5	48-16	
AG	0.5-3.0	48-8	
G	1.75-3.0	14-8	
N	3.5-5.0	7-5	


⑤ Стандарт резьбы		
60 = Универсальная резьба 60°	ACME = Американская трапецеидальная резьба	
55 = Универсальная резьба 55°	STACME = Американская укороченная трапецеидальная резьба	
ISO = Метрическая резьба по ISO	ABUT = Американская упорная резьба	
UN = Американская унифицированная резьба	BBUT = Британская упорная резьба	
W = Британская резьба Витворта	SAGE = Метрическая упорная резьба	
NPT = Американская стандартная трубная коническая резьба	API = Стандартная резьба по API	
NPTF = Американская трубная коническая резьба с сухим	BUT = Упорная резьба для обсадных труб по API	

⑤ Стандарт резьбы		
60 = Универсальная	ACME = Американская	
резьба 60°	трапецеидальная резьба	
55 = Универсальная резьба 55°	STACME = Американская укороченная трапецеидальная резьба	
ISO = Метрическая резьба	ABUT = Американская	
по ISO	упорная резьба	
UN = Американская	BBUT = Британская	
унифицированная резьба	упорная резьба	
W = Британская резьба	SAGE = Метрическая	
Витворта	упорная резьба	
NPT = Американская стандартная трубная коническая резьба	API = Стандартная резьба по API	
NPTF = Американская трубная коническая резьба с сухим уплотнением	BUT = Упорная резьба для обсадных труб по API	
BSPT = Британская стандартная трубная коническая резьба	APIRD = Круглая резьба для обсадных труб и насосно-компрессорных труб по API	
RD = Круглая резьба по	MJ = Метрическая	
DIN405	авиакосмическая резьба	
RD20400 = Круглая резьба	UNJ = Американская	
по DIN20400	авиакосмическая резьба	
TR = Метрическая	PG = Резьба PG по	
трапецеидальная резьба	немецким стандарам	

⑥ Дополнительная информация Используется для определения числа зубцов или геометрии канавки и т.д.


Режущие инструменты для нарезания резьбы

Правила обозначения моделей токарных пластин для нарезания резьбы Режущие пластины серии GN

Режущие инструментыдля нарезания резьбы

Правила обозначения моделей токарных пластин для нарезания резьбы Режущие пластины серии GST

Правила обозначения моделей токарных державок для нарезания резьбы

E R 2525 M 16 ☐ - A16

① Способ прижатия

S = Прижатие винтами

С = Прижатие нажимной плитой

② Тип обработки
Е = Проходная обработка

I= Расточная обработка

	į
③ Направление	
инструмента	

R = Правое

L = Левое

4 Размер головки

Державка для проходной обработки: Высота * Ширина

Державка для расточной обработки: Диаметр головки (например: 0025 = Диаметр 25мм)

⑤ Длина державки	
Код	Длина
F	80 mm
Н	100 mm
К	125 mm
М	150 mm
N	160 mm
Р	170 mm
Q	180 mm
R	200 mm
S	250 mm
Т	300 mm
U	350 mm
V	400 mm

⑥ Размер пластины	
Код	Значение IC режущей пластины
08	5 mm
11	6.35 mm
16	9.525 mm
22	12.7 mm
27	15.875 mm
11 16 22	6.35 mm 9.525 mm 12.7 mm

🗇 Материал державки		
А	Стальная державка с охлаждающим отверстием	
С	Твердосплавные державки	
Е	Твердосплавные державки с охлаждающим отверстием	
	Стальные державки	

® Дополнительная информация	
Державка для расточной обработки	A16 = Усиленный тип головки — диаметр 16 мм

Режущие инструменты для нарезания резьбы

Правила обозначения моделей токарных державок для нарезания резьбы . Державки серии GN

GN 2525 (1) (2) (3) (5) (4)

① Общее наименование серии GN

② Тип обработки		
Проходная обработка	S = Прямолинейная	
	E= Вертикальные	
	R = Канавка для выхода шлифовального круга	
Расточная обработка	A = Вертикальная с вну- тренним охлаждением	

③ Направление инструмента						
L = Левое						
R = Правое						

4 Размер головки Державка для проходной обработки: Высота * Ширина Державка для расточной обработки: Диаметр головки

⑤ Длина державки							
Код	Длина						
D	60 mm						
E	70 мм						
F	80 mm						
Н	100 mm						
К	125 mm						
М	150 mm						
Р	170 mm						
Q	180 mm						
R	200 mm						

⑥ Толщина пластины
2=3.81 мм
3=4.95 мм

Примечания: ① При выборе расточных державок, правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок. ② Серия GN — это бывшая серия G-NOTCH.

Правила обозначения моделей токарных державок для нарезания резьбы _{Державки серии GST}

GSTS R 1212 JK A 2-RS

① Общее наименование серии
GST
GSTS (тонкий)

② Направление пластины
R = Правое
L = Левое
N = Нейтральное

③ Размер головки
Державка для проходной обработки: Высота * Ширина

④ Длина державки						
Код	Длина					
JK	120 mm					

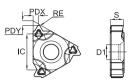
⑤ Размер пластины						
Специфично для серии GSTS						
А	Высота пластины = 8.7 мм					
В	Высота пластины = 9.5 мм					

⑥ Толщина пластины
2=2.2 мм
3=3.0 мм
4=4.0 мм

⑦ Дополнительная информацияRS = Державка для вторичного шпинделя

Ведомость токарных пластин для нарезания резьбы

Область применения	Тип резьбы	Схема резьбы	Код резьбы	Шаг резьбы	Стр.
	Универсальная резьба 60°	60°	60	0.5-5.0 (мм)	P272, P295, P296
Резьба для общей	Универсальная резьба 55°	55*	55	48-5 (TPI)	P273, P296
машиностроительной промышленности	Метрическая резьба по ISO	60°	ISO	0.4-6.0 (мм)	P274-P275
	Резьба UN	60' 1/4 P	UN	24-7 (TPI)	P276
	Резьба Витворта	R:0.137P	W	19-8 (TPI)	P277
	Резьба NPT	30° 30° AJ	NPT	27-8 (TPI)	P278
Резьба для установки	Резьба NPTF	30' 30' 41'	NPTF	18-11.5 (TPI)	P279
и соединения трубных деталей	Резьба BSPT	27.5° 27.5° Arg /137P	BSPT	28-11 (TPI)	P280
	Круглая резьба (DIN405)	R=0.22105P 30' R=0.23851P	RD	10-4 (TPI)	P281
	Круглая резьба (DIN20400)	R=0.22104P 30' R=0.23851P	RD20400	3.0-4.0 (мм)	P282

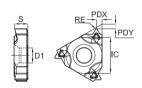

Примечание: В схеме резьбы, синий цвет — внутренняя резьба, серый цвет — наружная резьба

Ведомость токарных пластин для нарезания резьбы

Область применения	Тип резьбы	Схема резьбы	Код резьбы	Шаг резьбы	Стр.
	Резьба TR	30°	TR	1.5-7.0 (мм)	P283
	Резьба АСМЕ	29°	ACME	16-4 (TPI)	P284
Резьба для передачи	Резьба STACME	29°	STACME	16-3 (TPI)	P285
движения и усилий	Резьба SAGE	30°	SAGE	2.0-4.0 (MM)	P286
	Резьба АВИТ	0.16316P	ABUT	20-6 (TPI)	P287
	Резьба BBUT	0.2754P 0.2754P	BBUT	16-8 (TPI)	P288
Резьба для нефтяной	Резьба АРІ	30° 30° a a a a rots (IPF/24)	API	5-4 (TPI)	P289
промышленности	Резьба APIRD	30, 30,	APIRD	10-8 (TPI)	P290
Резьба для	Резьба МЈ	5/16P1/8P 60° Pmax 0.18042P Rmia 0.15011P	MJ	1.0-3.0 (MM)	P291
аэрокосмической промышленности	Резьба UNJ	5/16P1/8P 60° Pmax 0.18042P Rmia 0.15011P	LNN	32-8 (TPI)	P292-P293
Резьба для электротехнической промышленности	Резьба PG	R=0.107P 80°	PG	20-16 (TPI)	P294

Универсальная резьба 60°

▶ Наружная резьба

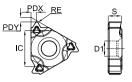


Код заказа		Шаг резьбы	- as a sweep of (MM)				Твердые сплавы с покрытием				
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ERA60-TC	0.5-1.5	0.8	0.9	0.08	9.525	3.47	4		•	•
99	16ERAG60-TC	0.5-3.0	1.1	1.5	0.08	9.525	3.47	4		•	•
	16ERG60-TC	1.75-3.0	1.2	1.7	0.25	9.525	3.47	4		•	•
	22ERN60-TC	3.5-5.0	1.7	2.5	0.51	12.7	4.71	5		•	•
	16ELAG60	0.5-3.0	1.1	1.5	0.08	9.525	3.47	4		0	

●В наличии ○ Доступно по запросу

Универсальная резьба 60°

▶ Внутренняя резьба

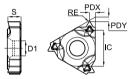


Код за	каза	Шаг резьбы			Размер	оы (мм)				Твердые спла покрытие М3215	
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	08IRA60-TC	0.5-1.5	0.6	0.7	0.08	5.00	2.25	2.68		•	•
	11IRA60-TC	0.5-1.5	0.8	0.9	0.08	6.35	3.00	3.2		•	•
A CA	16IRA60-TC	0.5-1.5	0.8	0.9	0.08	9.525	3.47	4		•	•
	16IRAG60-TC	0.5-3.0	1.1	1.5	0.08	9.525	3.47	4		•	•
30	16IRG60-TC	1.75-3.0	1.2	1.7	0.13	9.525	3.47	4		•	•
	22IRN60-TC	3.5-5.0	1.7	2.5	0.25	12.7	4.71	5		•	•
	08ILA60	0.5-1.5	0.6	0.7	0.08	5.00	2.25	2.68		•	
	22IRN60	3.5-5.0	1.8	2.5	0.36	12.7	4.71	5		•	

Режущие инструменты для нарезания резьбы

Универсальная резьба 55°

▶ Наружная резьба



Код за	каза	Шаг резьбы			Размерь	і (мм)			Твердые сплавы с покрытием			
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	16ERA55-TC	48-16	0.8	0.9	0.08	9.525	3.47	4		•	•	
33	16ERAG55-TC	48-8	1.1	1.5	0.08	9.525	3.47	4		•	•	
	16ERG55-TC	14-8	1.2	1.7	0.21	9.525	3.47	4		•	•	
	22ERN55-TC	7-5	1.7	2.5	0.44	12.7	4.71	5		•	•	

●В наличии ○ Доступно по запросу

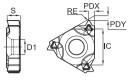
Универсальная резьба 55°

▶ Внутренняя резьба

Код за	каза	Шаг резьбы			Размеј	ры (мм)				рдые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	покрытием	GM3325
	11IRA55-TC	48-16	0.8	0.9	0.08	6.35	3.00	3.2		•	•
S all	16IRA55-TC	48-16	0.8	0.9	0.08	9.525	3.47	4		•	•
(a)	16IRAG55-TC	48-8	1.1	1.5	0.08	9.525	3.47	4	•	•	
55	16IRG55-TC	14-8	1.2	1.7	0.21	9.525	3.47	4		•	•
	22IRN55-TC	7-5	1.7	2.5	0.44	12.7	4.71	5		•	•
	08IRA55	48-16	0.6	0.7	0.08	5	2.25	2.68		•	
(O)											

Метрическая резьба по ISO

▶ Наружная резьба



Код:	Код заказа 16ER1.00ISO-TC 16ER1.25ISO-TC 16ER1.50ISO-TC 16ER2.00ISO-TC 16ER2.50ISO-TC 16ER2.50ISO-TC 16ER3.00ISO-TC 22ER3.50ISO-TC 22ER4.00ISO-TC 22ER4.50ISO-TC 22ER5.00ISO-TC 22ER5.50ISO-TC 22ER6.00ISO-TC 16ER0.40ISO 16ER0.70ISO 16ER0.75ISO 16ER0.80ISO 16ER1.00ISO 16ER1.25ISO 16ER1.25ISO 16ER1.50ISO 16ER1.75ISO	Шаг резьбы			рдые спла покрытие						
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER1.00ISO-TC	1.00	0.8	0.7	0.14	9.525	3.47	4		•	•
	16ER1.25ISO-TC	1.25	0.8	0.9	0.18	9.525	3.47	4		•	•
	16ER1.50ISO-TC	1.50	0.8	1.0	0.22	9.525	3.47	4		•	•
	16ER1.75ISO-TC	1.75	1.2	1.2	0.25	9.525	3.47	4		•	•
	16ER2.00ISO-TC	2.00	1.2	1.3	0.29	9.525	3.47	4		•	•
1	16ER2.50ISO-TC	2.50	1.2	1.5	0.36	9.525	3.47	4		•	•
	16ER3.00ISO-TC	3.00	1.2	1.5	0.43	9.525	3.47	4		•	•
S 180 ()	22ER3.50ISO-TC	3.50	1.6	2.3	0.45	12.7	4.71	5		•	•
	22ER4.00ISO-TC	4.00	1.6	2.3	0.52	12.7	4.71	5		•	•
	22ER4.50ISO-TC	4.50	1.7	2.4	0.58	12.7	4.71	5		•	•
	22ER5.00ISO-TC	5.00	1.7	2.5	0.63	12.7	4.71	5		•	•
	22ER5.50ISO-TC	5.50	1.9	2.7	0.72	12.7	4.71	5		•	•
	22ER6.00ISO-TC	6.00	1.9	2.7	0.78	12.7	4.71	5		0	•
	16ER0.40ISO	0.40	0.6	0.5	0.06	9.525	3.47	4			0
	16ER0.50ISO	0.50	0.6	0.5	0.10	9.525	3.47	4		•	•
	16ER0.70ISO	0.70	0.8	0.7	0.10	9.525	3.47	4			0
	16ER0.75ISO	0.75	0.8	0.7	0.10	9.525	3.47	4			•
_	16ER0.80ISO	0.80	0.6	0.6	0.10	9.525	3.47	4			•
	16ER1.00ISO	1.00	0.7	0.6	0.11	9.525	3.47	4		•	•
	16EL1.00ISO	1.00	0.7	0.7	0.14	9.525	3.47	4			•
	16ER1.25ISO	1.25	0.8	0.9	0.18	9.525	3.47	4			0
	16EL1.50ISO	1.50	0.8	1.0	0.22	9.525	3.47	4		•	•
	16ER1.75ISO	1.75	1.0	1.2	0.25	9.525	3.47	4			0
	16EL2.00ISO	2.00	1.2	1.3	0.29	9.525	3.47	4		•	•
	22ER4.00ISO	4.00	1.6	2.3	0.57	12.7	4.71	5			0

Режущие инструменты для нарезания резьбы

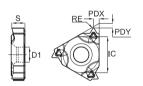
Метрическая резьба по ISO

▶ Внутренняя резьба

Код	заказа	Шаг резьбы			Размер	оы (мм)				рдые спла покрытие	
		(MM)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR1.00ISO-TC	1.00	0.8	0.7	0.07	6.35	3.00	3.2		•	•
	11IR1.25ISO-TC	1.25	0.8	0.9	0.09	6.35	3.00	3.2		•	•
	11IR1.50ISO-TC	1.50	0.8	1.0	0.11	6.35	3.00	3.2		•	•
	11IR1.75ISO-TC	1.75	0.9	1.1	0.13	6.35	3.00	3.2		•	•
	11IR2.00ISO-TC	2.00	0.9	1.1	0.15	6.35	3.00	3.2		•	•
	16IR1.00ISO-TC	1.00	0.8	0.7	0.07	9.525	3.47	4		•	•
	16IR1.25ISO-TC	1.25	0.8	0.9	0.09	9.525	3.47	4		•	•
	16IR1.50ISO-TC	1.50	0.8	1.0	0.11	9.525	3.47	4		•	•
500	16IR1.75ISO-TC	1.75	1.2	1.2	0.13	9.525	3.47	4		•	•
	16IR2.00ISO-TC	2.00	1.2	1.3	0.15	9.525	3.47	4		•	•
150	16IR2.50ISO-TC	2.50	1.2	1.5	0.18	9.525	3.47	4		•	•
	16IR3.00ISO-TC	3.00	1.2	1.5	0.22	9.525	3.47	4		•	•
	22IR3.50ISO-TC	3.50	1.6	2.3	0.22	12.7	4.71	5		•	•
	22IR4.00ISO-TC	4.00	1.6	2.3	0.25	12.7	4.71	5		•	•
	22IR4.50ISO-TC	4.50	1.6	2.4	0.28	12.7	4.71	5		•	•
	22IR5.00ISO-TC	5.00	1.6	2.3	0.32	12.7	4.71	5		•	•
	22IR5.50ISO-TC	5.50	1.6	2.3	0.36	12.7	4.71	5		•	•
	22IR6.00ISO-TC	6.00	1.6	2.4	0.39	12.7	4.71	5		•	•
	11IR0.75ISO	0.75	0.6	0.6	0.04	6.35	3	3.2		0	
	11IL1.50ISO	1.50	0.8	1.0	0.11	6.35	3	3.2		0	
	11IR1.50ISO	1.50	0.8	1.0	0.109	6.35	3	3.2		•	
	16IR0.50ISO	0.50	0.6	0.4	0.03	9.525	3.47	4		•	
X	16IR0.75ISO	0.75	0.6	0.6	0.04	9.525	3.47	4		0	
	16IL1.00ISO	1.00	0.6	0.7	0.07	9.525	3.47	4		0	
	16IR1.50ISO	1.50	0.8	1.0	0.11	9.525	3.47	4		0	
	16IL1.50ISO	1.50	0.8	1.0	0.11	9.525	3.47	4		•	
	16IR2.00ISO	2.00	1.0	1.3	0.15	9.525	3.47	4		0	
	16IL2.00ISO	2.00	1.0	1.3	0.15	9.525	3.47	4		•	
	16IL3.00ISO	3.00	1.2	1.5	0.22	9.525	3.47	4		0	
	22IL4.00ISO	4.00	1.6	2.3	0.25	12.7	4.71	5		0	

UN

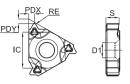
▶ Наружная резьба



Код за	каза	Шаг резьбы			Размер	оы (мм)				рдые спла покрытие GM3225 • • • • • • • • •	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER24UN-TC	24	0.8	0.8	0.15	9.525	3.47	4		•	•
	16ER20UN-TC	20	0.8	0.9	0.18	9.525	3.47	4		•	•
41	16ER18UN-TC	18	0.8	1.0	0.20	9.525	3.47	4		•	•
-57	16ER16UN-TC	16	0.9	1.1	0.23	9.525	3.47	4		•	•
	16ER14UN-TC	14	1.2	1.5	0.26	9.525	3.47	4		•	•
12	16ER12UN-TC	12	1.2	1.5	0.31	9.525	3.47	4		•	•
	16ER9UN-TC	9	1.2	1.7	0.42	9.525	3.47	4		•	•
	16ER8UN-TC	8	1.3	1.7	0.46	9.525	3.47	4		•	•
_	16ER20UN	20	0.8	0.9	0.18	9.525	3.47	4			0
	16ER10UN	10	1.2	1.6	0.41	9.525	3.47	4		•	
	22ER7UN	7	1.6	2.3	0.47	12.7	4.71	5			0

●В наличии ○ Доступно по запросу

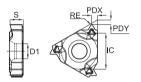
UN


▶ Внутренняя резьба

Код за	11IR20UN-TC 20 11IR18UN-TC 18 16IR24UN-TC 24 16IR20UN-TC 20 16IR18UN-TC 18 16IR16UN-TC 16 16IR14UN-TC 14 16IR12UN-TC 12	резьбы			Размер	оы (мм)			Твердые сплавы с покрытием		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR20UN-TC	20	0.8	0.9	0.09	6.35	3.00	3.2		•	•
	11IR18UN-TC	18	0.8	1.0	0.10	6.35	3.00	3.2		•	•
M	16IR24UN-TC	24	0.8	0.8	0.08	9.525	3.47	4		•	•
5	16IR20UN-TC	20	0.8	0.9	0.09	9.525	3.47	4		•	•
S C	16IR18UN-TC	18	0.8	1.0	0.10	9.525	3.47	4		•	•
D IR	16IR16UN-TC	16	0.9	1.1	0.12	9.525	3.47	4		•	•
	16IR14UN-TC	14	1.2	1.5	0.13	9.525	3.47	4		•	•
	16IR12UN-TC	12	1.2	1.5	0.16	9.525	3.47	4		•	•
	16IR8UN-TC	8	1.3	1.7	0.23	9.525	3.47	4		•	•
*	16IR10UN	10	1.1	1.5	0.183	9.525	3.47	4		•	

W

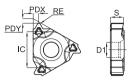
▶ Наружная резьба



Код за	каза	Шаг резьбы			Размеј		Твердые сплавы с покрытием				
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215		GM3325
	16ER19W-TC	19	0.8	1.0	0.17	9.525	3.47	4		•	•
	16ER18W-TC	18	0.8	1.0	0.18	9.525	3.47	4		0	0
	16ER16W-TC	16	0.9	1.1	0.20	9.525	3.47	4		•	•
130 33 N	16ER16W-TC 16 0 16ER14W-TC 14 1 16ER12W-TC 12 1 16ER11W-TC 11 1	1.2	1.5	0.24	9.525	3.47	4		•	•	
12 (1)	16ER12W-TC	12	1.2	1.5	0.28	9.525	3.47	4		•	•
	16ER11W-TC	11	1.2	1.5	0.30	9.525	3.47	4		•	•
	16ER10W-TC	10	1.1	1.5	0.34	9.525	3.47	4		•	0
A	16ER8W	8	1.2	1.5	0.41	9.525	3.47	4			0

●В наличии ○ Доступно по запросу

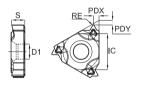
W


▶ Внутренняя резьба

Код зак	Дагрезьбь (ТРІ) 11IR19W-TC 19 11IR14W-TC 14 16IR19W-TC 19 16IR18W-TC 18 16IR16W-TC 16	резьбы			Размер	оы (мм)			Твердые сплавы с покрытием		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR19W-TC	19	0.9	1.1	0.19	6.35	3.00	3.2		•	•
	11IR14W-TC	14	0.9	1.1	0.27	6.35	3.00	3.2		•	•
5	16IR19W-TC	19	0.8	1.0	0.17	9.525	3.47	4		•	•
	16IR18W-TC	18	0.8	1.0	0.18	9.525	3.47	4		•	0
15° 25°	16IR16W-TC	16	0.9	1.1	0.20	9.525	3.47	4		•	0
L IR	16IR14W-TC	14	1.2	1.5	0.24	9.525	3.47	4		•	•
	16IR12W-TC	12	1.2	1.5	0.28	9.525	3.47	4		•	•
	16IR11W-TC	11	1.2	1.5	0.30	9.525	3.47	4		•	•
	16IR8W-TC	8	1.2	1.5	0.41	9.525	3.47	4		•	•

NPT

▶ Наружная резьба

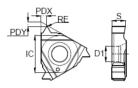


Код з	аказа	Шаг резьбы			Размер	оы (мм)				рдые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	•	GM3325
	16ER27NPT-TC	27	0.7	0.8	0.13	9.525	3.47	4		•	•
	16ER18NPT-TC	18	0.8	1.0	0.20	9.525	3.47	4		•	•
100	16ER14NPT-TC	14	1.2	1.5	0.22	9.525	3.47	4		•	•
17.5	16ER11.5NPT-TC	11.5	1.2	1.5	0.25	9.525	3.47	4		•	•
	16ER8NPT-TC	8	1.3	1.8	0.30	9.525	3.47	4		•	•
_	16ER27NPT	27	0.07	0.7	0.80	9.525	3.47	4		•	
	16ER18NPT	18	0.8	1.0	0.08	9.525	3.47	4		•	
	16ER14NPT	14	1.2	1.5	0.08	9.525	3.47	4		•	
	16ER11.5NPT	11.5	1.2	1.5	0.091	9.525	3.47	4		•	

●В наличии ○ Доступно по запросу

NPT

▶ Внутренняя резьба

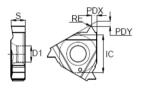


Кодз	заказа	Шаг резьбы			Размер	оы (мм)				рдые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR18NPT-TC	18	0.8	1.0	0.20	6.35	3.00	3.2		•	•
	16IR27NPT-TC	27	0.7	0.8	0.13	9.525	3.47	4		0	0
E. Sess	16IR18NPT-TC	18	0.8	1.0	0.20	9.525	3.47	4		•	•
En O	16IR14NPT-TC	14	1.2	1.5	0.22	9.525	3.47	4		•	•
IR	16IR11.5NPT-TC	11.5	1.2	1.5	0.25	9.525	3.47	4		•	•
	16IR8NPT-TC	8	1.3	1.8	0.30	9.525	3.47	4		•	•
	11IR18NPT	18	0.8	1.1	0.081	6.35	3	3.2		•	
	11IL18NPT	18	0.8	1.1	0.081	6.35	3	3.2		•	
	16IR14NPT	14	1.2	1.5	0.08	9.525	3.47	4		•	
	16IR11.5NPT	11.5	1.2	1.5	0.107	9.525	3.47	4		•	

Режущие инструментыдля нарезания резьбы

NPTF

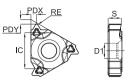
▶ Наружная резьба



Код за	іказа	Шаг резьбы			Размеј	оы (мм)			Твердые спла покрытиен GM3215 GM3225		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
A	16ER18NPTF	18	0.8	1.0	0.08	9.525	3.47	4		0	
	16ER14NPTF	14	1.0	1.2	0.08	9.525	3.47	4		0	
	16ER11.5NPTF	11.5	1.2	1.5	0.08	9.525	3.47	4		0	
~											

●В наличии ○ Доступно по запросу

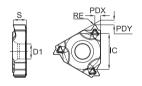
NPTF


▶ Внутренняя резьба

Код за	каза	Шаг резьбы			Размер	оы (мм)				одые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
<i>></i> / ₀	16IR18NPTF	18	0.8	1.0	0.08	9.525	3.47	4		0	
°	16IR14NPTF	14	1.0	1.2	0.08	9.525	3.47	4		0	
	16IR11.5NPTF	11.5	1.2	1.5	0.08	9.525	3.47	4		0	

BSPT

▶ Наружная резьба



Код з	Код заказа р				Размер	оы (мм)				одые спла покрытие	
			PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER28BSPT-TC	28	0.7	0.8	0.11	9.525	3.47	4		•	•
	16ER19BSPT-TC	19	0.8	1.0	0.17	9.525	3.47	4		•	•
	16ER14BSPT-TC	14	1.2	1.5	0.24	9.525	3.47	4		•	•
	16ER11BSPT-TC	11	1.2	1.5	0.30	9.525	3.47	4		•	•

●В наличии ○ Доступно по запросу

BSPT

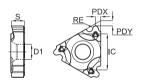
▶ Внутренняя резьба

Код за	Код заказа	Шаг резьбы			Размер		Твердые сплавы с покрытием				
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR19BSPT-TC	19	0.8	1.0	0.18	6.35	3.00	3.2		•	•
	11IR14BSPT-TC	14	0.9	1.1	0.24	6.35	3.00	3.2		•	•
Si Ya	16IR28BSPT-TC	28	0.7	0.8	0.11	9.525	3.47	4		0	0
	16IR19BSPT-TC	19	0.8	1.0	0.17	9.525	3.47	4		•	•
188	16IR14BSPT-TC	14	1.2	1.5	0.24	9.525	3.47	4		•	•
	16IR11BSPT-TC	11	1.2	1.5	0.30	9.525	3.47	4		•	•
6	16IR11BSPT	11	1.2	1.5	0.32	9.525	3.47	4		•	

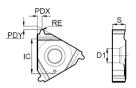
Т Режущие инструменты для нарезания резьбы

RD(DIN405)

▶ Наружная резьба



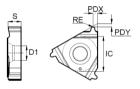
Код заказа	Шаг Размеры (мм) резьбы (TPI)							Твердые сплавы с покрытием			
	(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
RD-TC	8	1.4	1.3	0.75	9.525	3.47	4		•	0	
RD-TC	6	1.4	1.5	1.00	9.525	3.47	4		•	0	
.0RD	10	1.1	1.2	0.609	9.525	3.47	4	0			
RD	4	2.2	2.3	1.52	12.7	4.71	5	•	•		
1	BRD-TC 6RD-TC LORD 4RD	BRD-TC 8 5RD-TC 6	BRD-TC 8 1.4 5RD-TC 6 1.4 10RD 10 1.1	BRD-TC 8 1.4 1.3 5RD-TC 6 1.4 1.5 10RD 10 1.1 1.2	BRD-TC 8 1.4 1.3 0.75 5RD-TC 6 1.4 1.5 1.00 10RD 10 1.1 1.2 0.609	BRD-TC 8 1.4 1.3 0.75 9.525 BRD-TC 6 1.4 1.5 1.00 9.525 BRD-TC 10 1.1 1.2 0.609 9.525	BRD-TC 8 1.4 1.3 0.75 9.525 3.47 5RD-TC 6 1.4 1.5 1.00 9.525 3.47 10RD 10 1.1 1.2 0.609 9.525 3.47	BRD-TC 8 1.4 1.3 0.75 9.525 3.47 4 5RD-TC 6 1.4 1.5 1.00 9.525 3.47 4 LORD 10 1.1 1.2 0.609 9.525 3.47 4	BRD-TC 8 1.4 1.3 0.75 9.525 3.47 4 5RD-TC 6 1.4 1.5 1.00 9.525 3.47 4 LORD 10 1.1 1.2 0.609 9.525 3.47 4	BRD-TC 8 1.4 1.3 0.75 9.525 3.47 4 • 5RD-TC 6 1.4 1.5 1.00 9.525 3.47 4 • 10RD 10 1.1 1.2 0.609 9.525 3.47 4 •	


●В наличии ○ Доступно по запросу

RD(DIN405)

▶ Внутренняя резьба

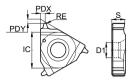
Кодз	аказа	Шаг резьбы			Размер	оы (мм)			Твердые сплавы с покрытием			
	16IR8RD-TC 16IR6RD-TC 16IR10RD	(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	16IR8RD-TC	8	1.4	1.3	0.70	9.525	3.47	4		•	0	
23	16IR6RD-TC	6	1.4	1.5	0.936	9.525	3.47	4		•	0	
I IR												
	16IR10RD	10	1.1	1.2	0.564	9.525	3.47	4	0			
	22IR4RD	4	2.2	2.3	1.44	12.7	4.71	5	•	•		



Кодз	Код заказа				Размер	ы (мм)			Твердые сплавы с покрытием			
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	22ER3.0RD20400	3.0	1.3	1.7	0.66	12.7	4.71	5	0			
· ·	22ER4.0RD20400	4.0	1.6	2.2	0.88	12.7	4.71	5	0			
10												

●В наличии ○ Доступно по запросу

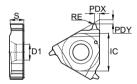
RD(DIN20400)


▶ Внутренняя резьба

Кодз	Код заказа Ш резі (м				Размер	оы (мм)			Твердые сплавы с покрытием			
			PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	22IR3.0RD20400	3.0	1.3	1.7	0.66	12.7	4.71	5	0			

TR

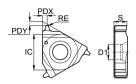
▶ Наружная резьба



Код зак	Код заказа	Шаг резьбы (мм)			Разме	оы (мм)			Твердые сплавы с покрытием			
		(IVIIVI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	11ER1.5TR	1.5	1.0	1.1	0.10	6.35	3	3.2		0		
	16ER1.5TR	1.5	1.0	1.1	0.10	9.525	3.47	4		•		
	16ER2.0TR	2.0	1.1	1.3	0.18	9.525	3.47	4		•		
	16ER3.0TR	3.0	1.2	1.5	0.11	9.525	3.47	4		•		
	22ER4.0TR	4.0	1.7	1.9	0.25	12.7	4.71	5	0	•		
	22ER5.0TR	5.0	1.9	2.1	0.25	12.7	4.71	5	•	•		
•	22ER6.0TR	6.0	1.9	2.1	0.25	12.7	4.71	5	0	•		
	27ER6.0TR	6.0	1.9	2.1	0.25	15.875	6.26	6.16		0		
	27ER7.0TR	7.0	2.4	2.7	0.25	15.875	6.26	6.16		0		

●В наличии ○ Доступно по запросу

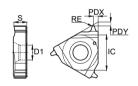
TR


▶ Внутренняя резьба

Код зака	Код заказа	Шаг резьбы			Разме	ры (мм)			Твердые сплавы с покрытием		
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR1.5TR	1.5	0.9	1.0	0.47	6.35	3	3.2		0	
	16IR1.5TR	1.5	1.0	1.1	0.10	9.525	3.47	4		•	
	16IR2.0TR	2.0	1.0	1.3	0.18	9.525	3.47	4		•	
>	16IL3.0TR	3.0	1.1	1.3	0.15	9.525	3.47	4		0	
	16IR3.0TR	3.0	1.1	1.3	0.15	9.525	3.47	4		•	
	22IR4.0TR	4.0	1.6	1.9	0.25	12.7	4.71	5		•	
	22IR5.0TR	5.0	1.84	2.2	0.25	12.7	4.71	5		•	
	22IR6.0TR	6.0	1.9	2.2	0.25	12.7	4.71	5		•	
	27IR6.0TR	6.0	1.9	2.2	0.25	15.875	6.276	6.16		0	
	27IR7.0TR	7.0	2.5	2.8	0.25	15.875	6.15	6.16		0	

ACME

▶ Наружная резьба

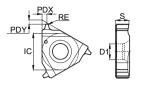


Код за	Код заказа	Шаг резьбы			Размер		Твердые сплавы с покрытием				
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11ER16ACME	16	0.9	1.0	0.08	6.35	3	3.2		0	
	16ER16ACME	16	0.9	1.0	0.08	9.525	3.47	4		0	
	16ER14ACME	14	0.9	1.0	0.08	9.525	3.47	4		0	
	16ER12ACME	12	1.1	1.3	0.12	9.525	3.47	4		•	
~4	16ER10ACME	10	1.1	1.0	0.1	9.525	3.47	4		•	
	16ER8ACME	8	1.3	1.5	0.15	9.525	3.47	4		•	
	16EL8ACME	8	1.4	1.8	0.15	9.525	3.47	4		0	
	16ER7ACME	7	1.6	2.0	0.25	9.525	3.47	4		0	
	16ER6ACME	6	1.6	1.8	0.08	9.525	3.47	4		0	
	22ER6ACME	6	1.65	1.75	0.08	12.7	4.71	5	0	•	
	22EL6ACME	6	1.8	2.1	0.08	12.7	4.71	5		0	
	22ER5ACME	5	2	2.2	0.12	12.7	4.71	5	•	•	
	27ER4ACME	4	2.4	2.7	0.15	15.875	6.15	6.16		•	

●В наличии ○ Доступно по запросу

ACME

▶ Внутренняя резьба

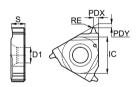

Код заказа	Шаг резьбы			Размер		Твердые сплавы с покрытием					
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR16ACME	16	0.9	1.0	0.08	6.35	3	3.2		0	
	16IR16ACME	16	1.0	1.1	0.08	9.525	3.47	4		0	
	16IR14ACME	14	0.9	1.0	0.08	9.525	3.47	4		0	
	16IR12ACME	12	1.1	1.3	0.08	9.525	3.47	4		•	
	16IR10ACME	10	1.2	1.3	0.08	9.525	3.47	4		0	
	16IR8ACME	8	1.4	1.8	0.15	9.525	3.47	4		•	
	16IL8ACME	8	1.4	1.8	0.15	9.525	3.47	4		0	
	16IR7ACME	7	1.6	1.9	0.15	9.525	3.47	4		0	
	16IR6ACME	6	1.6	1.8	0.11	9.525	3.47	4		•	
	22IR6ACME	6	1.65	1.8	0.11	12.7	4.71	5		•	
	22IL6ACME	6	1.8	2.1	0.11	12.7	4.71	5		0	
	22IR5ACME	5	2	2.2	0.12	12.7	4.71	5		•	
	27IR4ACME	4	2.4	2.7	0.15	15.875	6.15	6.16		•	

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

Т Режущие инструменты для нарезания резьбы

STACME

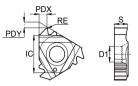
▶ Наружная резьба



Код з	аказа	Шаг резьбы			Размеј	ры (мм)			Твердые сплавы с покрытием			
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	11ER16STACME	16	0.9	1.0	0.08	6.35	3	3.2		0		
	16ER16STACME	16	0.9	1.0	0.08	9.525	3.47	4		0		
	16ER14STACME	14	1.0	1.1	0.08	9.525	3.47	4		•		
	16ER12STACME	12	1.1	1.1	0.10	9.525	3.47	4		•		
	16ER10STACME	10	1.2	1.2	0.10	9.525	3.47	4		•		
A.	16ER8STACME	8	1.4	1.4	0.10	9.525	3.47	4		•		
	16EL8STACME	8	1.4	1.5	0.20	9.525	3.47	4		0		
	16ER6STACME	6	1.5	1.5	0.11	9.525	3.47	4		•		
	22ER6STACME	6	1.7	1.9	0.11	12.7	4.71	5	0	•		
	22EL6STACME	6	1.7	1.9	0.11	12.7	4.71	5		0		
	22ER5STACME	5	2.1	2.3	0.12	12.7	4.71	5		0		
	22ER4STACME	4	2.15	2.4	0.27	12.7	4.71	5		•		
	27ER4STACME	4	2.4	2.7	0.27	15.875	6.15	6.16		0		
	27ER3STACME	3	3	3.3	0.35	15.875	6.15	6.16		0		

●В наличии ○ Доступно по запросу

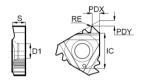
STACME


▶ Внутренняя резьба

Код заказа		Шаг резьбы			Разме	Твердые сплавы с покрытием					
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR16STACME	16	0.9	1.0	0.08	6.35	3	3.2		0	
	16IR16STACME	16	0.9	1.0	0.08	9.525	3.47	4		0	
	16IR14STACME	14	1.0	1.1	0.08	9.525	3.47	4		•	
	16IR12STACME	12	1.1	1.1	0.08	9.525	3.47	4		•	
	16IR10STACME	10	1.2	1.3	0.10	9.525	3.47	4		•	
	16IR8STACME	8	1.2	1.1	0.1	9.525	3.47	4		•	
	16IL8STACME	8	1.2	1.1	0.1	9.525	3.47	4		0	
	16IR6STACME	6	1.8	1.8	0.12	9.525	3.47	4		•	
	22IR6STACME	6	1.7	1.8	0.12	12.7	4.71	5	0	•	
	22IL6STACME	6	1.7	1.8	0.12	12.7	4.71	5		0	
	22IR5STACME	5	2.1	2.3	0.12	12.7	4.71	5		•	
	22IR4STACME	4	2.3	2.4	0.27	12.7	4.71	5		•	
	27IR4STACME	4	2.4	2.7	0.27	15.875	6.15	6.16		0	
	27IR3STACME	3	3.0	3.3	0.35	15.875	6.15	6.16		0	

SAGE

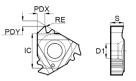
▶ Наружная резьба



Код заказа		Шаг резь- бы (мм)			Размер	Твердые сплавы с покрытием					
			PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER2.0SAGE	2.0	1.3	1.8	0.22	9.525	3.47	4		0	
	22ER3.0SAGE	3.0	1.6	2.3	0.34	12.7	4.71	5		0	
	22ER4.0SAGE	4.0	1.8	2.7	0.46	12.7	4.71	5		•	

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

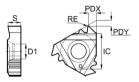
SAGE


▶ Внутренняя резьба

Код заказа		Шаг резь- бы (мм)			Размеј	Твердые сплавы с покрытием					
			PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16IR2.0SAGE	2.0	1.5	1.9	0.12	9.525	3.47	4		0	
	22IR3.0SAGE	3.0	1.9	2.5	0.11	12.7	4.71	5		0	
	22IR4.0SAGE	4.0	2.0	2.8	0.14	12.7	4.71	5		0	

ABUT

▶ Наружная резьба

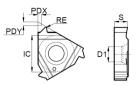


Код за	каза	Шаг резь- бы			Размер	оы (мм)				Твердые сплавы покрытием М3215	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215		GM3325
	16ER20ABUT	20	1.0	1.3	0.08	9.525	3.47	4	0		
	16ER16ABUT	16	1.3	1.9	0.08	9.525	3.47	4	0		
	16ER12ABUT	12	1.3	1.9	0.12	9.525	3.47				
30	16ER10ABUT	10	1.5	2.1	0.15	9.525	3.47	4		0	
	22ER8ABUT	8	2.0	3.0	0.18	12.7	4.71	5	0		
	22ER6ABUT	6	2.2	3.3	0.23	12.7	4.71	5		0	

●В наличии ○ Доступно по запросу

ABUT

▶ Внутренняя резьба

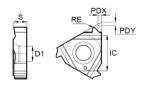


Код зак	Код заказа б	Шаг резь- бы			Размер	оы (мм)				одые спла покрытием	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16IR20ABUT	20	1.0	1.3	0.08	9.525	3.47	4		0	
	16IR16ABUT	16	1.3	1.8	0.08	9.525	3.47	4		•	
0	16IR12ABUT	12	1.4	2.0	0.12	9.525	3.47	4		0	
	16IR10ABUT	10	15	2.2	0.15	9.525	3.47	4		0	
	22IR8ABUT	8	2.0	3.0	0.18	12.7	4.71	5		0	
	22IR6ABUT	6	2.2	3.3	018	12.7	4.71	5		0	

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

BBUT

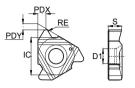
▶ Наружная резьба



Код за	каза	Шаг резьбы			Размер	оы (мм)			Твердые сплавы покрытием GM3215 GM3225 GI		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER16BBUT	16	1.1	1.5	0.16	9.525	3.47	4		0	
	16ER12BBUT	12	1.3	1.9	0.22	9.525	3.47	4		0	
	16ER10BBUT	10	1.4	2.0	0.27	9.525	3.47	4		0	
	16ER8BBUT	8	1.6	2.2	0.35	9.525	3.47	4	0		

●В наличии ОДоступно по запросу

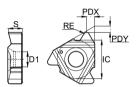
BBUT


▶ Внутренняя резьба

Код зак	аза	Шаг резьбы			Размер	оы (мм)				одые спла покрытием	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215 GM3225 G		GM3325
5/	16IR16BBUT	16	1.1	1.5	0.16	9.525	3.47	4		0	
	16IR12BBUT	12	1.3	1.9	0.22	9.525	3.47	4		0	
	16IR10BBUT	10	1.4	2.0	0.27	9.525	3.47	4		0	
	16IR8BBUT	8	1.6	2.2	0.35	9.525	3.47	4		0	

API

▶ Наружная резьба

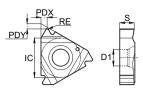


Код за	каза	Шаг резьбы			Размер	оы (мм)			• •		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	окрытие	GM3325
	22ER5API403	5	2.0	2.6	0.511	12.7	4.71	5	0		
	22ER4API382	4	2.1	2.8	0.971	12.7	4.71	5	•	•	
	22ER4API383	4	1.9	2.7	0.971	12.7	4.71	5	0	0	
	22ER4API502	4	1.9	2.8	0.639	12.7	4.71	5		•	
	22ER4API503	4	2.1	2.7	0.639	12.7	4.71	5		0	

●В наличии ○ Доступно по запросу

API

▶ Внутренняя резьба

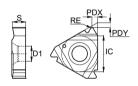


Код за	каза	Шаг резьбы			Размер	оы (мм)					
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	• •	GM3325
	22IR5API403	5	2.0	2.7	0.515	12.7	4.71	5	•		
	22IR4API382	4	2.1	2.8	0.979	12.7	4.71	5	•	•	
	22IR4API383	4	1.9	2.7	0.979	12.7	4.71	5	0	0	
	22IR4API502	4	2.0	2.7	0.644	12.7	4.71	5	•	•	
	22IR4API503	4	2.0	2.8	0.644	12.7	4.71	5	0		

lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

API RD

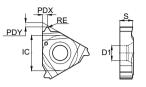
▶ Наружная резьба



Код за	каза	Шаг резьбы			Размер	оы (мм)			Твердые сплав покрытием GM3215 GM3225		
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	покрытие	GM3325
	16ER10APIRD	10	1.48	1.5	0.435	9.525	3.47	4		•	
	16ER8APIRD	8	1.3	1.5	0.359	9.525	3.47	4	•	•	

●В наличии ○ Доступно по запросу

API RD


▶ Внутренняя резьба

Код за	каза	Шаг резьбы			Размер	оы (мм)				одые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16IR10APIRD	10	1.5	1.3	0.361	9.525	3.47	4		•	
	16IR8APIRD	8	1.5	1.3	0.438	9.525	3.47	4	0	•	

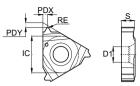
MJ

▶ Наружная резьба

Код зан	каза	Шаг резьбы			Размер	оы (мм)				дые сплав окрытием	
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER1.00MJ	1.00	0.6	0.7	0.165	9.525	3.47	4		•	
	16ER1.25MJ	1.25	0.8	0.9	0.207	9.525	3.47	4		•	
_	16ER1.50MJ	1.50	0.8	1.1	0.24	9.525	3.47	4		•	
	16EL1.50MJ	1.50	0.8	1.1	0.24	9.525	3.47	4		ПОКРЫТИЕМ 5 GM3225 ●	
	16ER1.75MJ	1.75	0.9	1.2	0.29	9.525	3.47	4		0	
	16ER2.00MJ	2.00	1.0	1.3	0.33	9.525	3.47	4		•	
	16ER2.50MJ	2.50	1.1	1.5	0.41	9.525	3.47	4		0	
	16ER3.00MJ	3.00	1.2	1.6	0.50	9.525	3.47	4		0	

●В наличии ○ Доступно по запросу

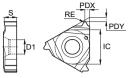
MJ


▶ Внутренняя резьба

Код зак	каза	Шаг резьбы			Размер	оы (мм)			Твердые сплавы с покрытием			
		(мм)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325	
	11IR1.00MJ	1.00	0.6	0.7	0.07	6.35	3	3.2		0		
	11IR1.25MJ	1.25	0.8	0.9	0.08	6.35	3	3.2		0		
	11IR1.50MJ	1.50	0.7	1.0	0.09	6.35	3	3.2		0		
	11IR2.00MJ	2.00	1.0	1.3	0.13	6.35	3	3.2		0		
	16IR1.00MJ	1.00	0.6	0.7	0.07	9.525	3.47	4		•		
	16IR1.25MJ	1.25	0.8	0.9	0.08	9.525	3.47	4		0		
	16IR1.50MJ	1.50	0.8	1.0	0.09	9.525	3.47	4		0		
	16IR2.00MJ	2.00	1.0	1.3	0.13	9.525	3.47	4		0		
	16IR2.50MJ	2.50	1.1	1.5	0.15	9.525	3.47	4		0		
	16IR3.00MJ	3.00	1.2	1.6	0.18	9.525	3.47	4		0		

UNJ

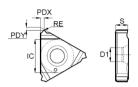
▶ Наружная резьба



Код за	каза	Шаг резьбы			Размер	оы (мм)				одые спла покрытие	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11ER32UNJ	32	0.6	0.7	0.13	6.35	3	3.2		0	
	11ER28UNJ	28	0.6	0.7	0.15	6.35	3	3.2		0	
	11ER24UNJ	24	0.6	0.7	0.18	6.35	3	3.2		0	
	11ER20UNJ	20	0.7	0.9	0.21	6.35	3	3.2		0	
	11ER18UNJ	18	0.8	1.0	0.23	6.35	3	3.2		0	
	11ER16UNJ	16	0.8	1.0	0.25	6.35	3	3.2		0	
	11ER14UNJ	14	1.0	1.2	0.30	6.35	3	3.2		0	
	16ER32UNJ	32	0.6	0.7	0.13	9.525	3.47	4		•	
	16ER28UNJ	28	0.6	0.7	0.15	9.525	3.47	4		•	
	16ER24UNJ	24	0.6	0.7	0.175	9.525	3.47	4		0	
	16ER20UNJ	20	0.7	0.9	0.21	9.525	3.47	4		•	
	16ER18UNJ	18	0.8	1.0	0.23	9.525	3.47	4		•	
	16ER16UNJ	16	0.8	1.0	0.263	9.525	3.47	4		0	
	16ER14UNJ	14	1.0	1.2	0.30	9.525	3.47	4		0	
	16ER12UNJ	12	1.0	1.2	0.35	9.525	3.47	4		0	
	16ER10UNJ	10	1.1	1.4	0.42	9.525	3.47	4		0	
	16ER8UNJ	8	1.4	1.7	0.54	9.525	3.47	4		0	

Режущие инструменты для нарезания резьбы

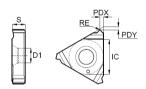
UNJ


▶ Внутренняя резьба

Код за	аказа	Шаг резьбы			Размер	оы (мм)				одые спла покрытиен GM3225 О О О О О О О О О О О О О О О О О О	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR32UNJ	32	0.6	0.6	0.025	6.35	3	3.2		0	
	11IR28UNJ	28	0.6	0.7	0.05	6.35	3	3.2		0	
	11IR24UNJ	24	0.6	0.8	0.05	6.35	3	3.2		0	
	11IR20UNJ	20	0.7	0.9	0.07	6.35	3	3.2		0	
	11IR18UNJ	18	0.8	1.0	0.07	6.35	3	3.2		0	
	11IR16UNJ	16	0.8	1.0	0.07	6.35	3	3.2		0	
	11IR14UNJ	14	1.0	1.2	0.1	6.35	3	3.2		0	
	16IR32UNJ	32	0.6	0.6	0.05	9.525	3.47	4		0	
	16IR28UNJ	28	0.5	0.7	0.05	9.525	3.47	4		0	
	16IR24UNJ	24	0.6	0.8	0.05	9.525	3.47	4		0	
~	16IR20UNJ	20	0.7	0.9	0.07	9.525	3.47	4		0	
	16IR18UNJ	18	0.8	1.0	0.07	9.525	3.47	4		0	
	16IR16UNJ	16	0.8	1.0	0.07	9.525	3.47	4		•	
	16IR14UNJ	14	1.0	1.2	0.10	9.525	3.47	4		0	
	16IR12UNJ	12	1.0	1.3	0.12	9.525	3.47	4		0	
	16IR10UNJ	10	1.0	1.4	0.15	9.525	3.47	4		0	
	16IR8UNJ	8	1.0	1.4	0.19	9.525	3.47	4		0	

PG

▶ Наружная резьба

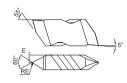


Код зак	аза	Шаг резьбы			Размер	оы (мм)				одые спла покрытиен	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	16ER20PG	20	0.8	0.9	0.14	9.525	3.47	4		0	
2	16ER18PG	18	0.8	0.9	0.09	9.525	3.47	4		0	
	16ER16PG	16	0.8	1.0	0.12	9.525	3.47	4		0	

●В наличии ○ Доступно по запросу

PG

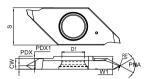
▶ Внутренняя резьба



Код зака	13a	Шаг резьбы			Размер	ры (мм)				одые спла покрытиен	
		(TPI)	PDY	PDX	RE	IC	S	D1	GM3215	GM3225	GM3325
	11IR20PG	20	0.7	0.9	0.08	6.35	3	3.2		0	
	11IR18PG	18	0.8	1.0	0.09	6.35	3	3.2		0	
	11IR16PG	16	0.8	1.0	0.12	6.35	3	3.2		0	
	16IR20PG	20	0.7	0.9	0.08	9.525	3.47	4		0	
	16IR18PG	18	0.8	1.0	0.09	9.525	3.47	4		0	
	16IR16PG	16	0.8	1.0	0.12	9.525	3.47	4		0	

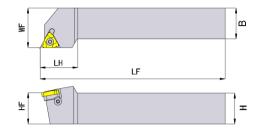
lacktriangleВ наличии $\ \bigcirc$ Доступно по запросу

GNTP


▶ Универсальная резьбонарезная пластина 60°, с передним углом

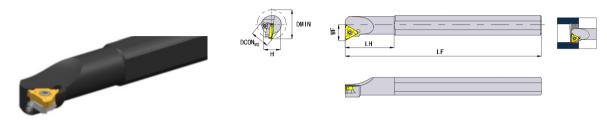
	Vол 22/2	22	Спецификации		Шагр	езьбы		Размер	оы (мм)	Твердые сплавы с покрытием
	Код зака	3d	пластин	Наружная резьба (мм)	Внутренняя резьба (мм)	Наружная резьба (TPI)	Внутренняя резьба (TPI)	RE	Е	GM3225
		GNTP2L	2	0.70-3.00	1.25-3.50	8-36	7-20	0.10	1.91	•
		GNTP2R	2	0.70-3.00	1.25-3.50	8-36	7-20	0.10	1.91	•
	GNTP3L GNTP3R	GNTP3L	3	1.25-4.00	2.00-5.00	4-20	5-12	0.17	2.49	•
		3	1.25-4.00	2.00-5.00	4-20	5-12	0.17	2.49	•	

GSTT


▶ Пластины для нарезания резьбы на мелких деталях

		Шаг ре	зьбы				Размер	оы (мм)				спла	одые явы с ытием
Код за	каза	ММ	TPI	W1	CW	S	D1	RE	PDX	PDX1	PNA	GAT7115	GAT7125
	GSTT3LA6000	0.2-0.6	64-48	3	2.5	8.7	5.2	-	2.1	0.4	60°	•	•
	GSTT3LB6000	0.2-0.6	64-48	3	2.5	8.7	5.2	-	0.4	2.1	60°	•	•
	GSTT3LA60005	0.5-1.25	48-24	3	2.5	8.7	5.2	0.05	1.7	0.8	60°	•	•
	GSTT3LB60005	0.5-1.25	48-24	3	2.5	8.7	5.2	0.05	0.8	1.7	60°	•	•
	GSTT3LN6001	1-1.5	24-18	3	2.5	8.7	5.2	0.1	1.25	1.25	60°	•	•
	GSTT3LA55005	-	40-16	3	2.5	8.7	5.2	0.05	1.7	0.8	55°	•	•
	GSTT3LB55005	-	40-16	3	2.5	8.7	5.2	0.05	0.8	1.7	55°	•	•
	GSTT3RA6000	0.2-0.6	64-48	3	2.5	8.7	5.2	-	0.4	2.1	60°	•	•
	GSTT3RB6000	0.2-0.6	64-48	3	2.5	8.7	5.2	-	2.1	0.8	60°	•	•
	GSTT3RA60005	0.5-1.25	48-24	3	2.5	8.7	5.2	0.05	0.8	1.7	60°	•	•
	GSTT3RB60005	0.5-1.25	48-24	3	2.5	8.7	5.2	0.05	1.7	0.8	60°	•	•
	GSTT3RN6001	1-1.5	24-18	3	2.5	8.7	5.2	0.1	1.25	1.25	60 °	•	•
	GSTT3RA55005	-	40-16	3	2.5	8.7	5.2	0.05	0.8	1.7	55°	•	•
	GSTT3RB55005	-	40-16	3	2.5	8.7	5.2	0.05	1.7	0.8	55°	•	•

Державка для проходной обработки


На рис. показана правая

Код заказа	Р	азме	еры (мм)		Пласти-	Винт	Подкладная пластина	Винт под- кладной пластины	Ключ	Ключ для под- кладной пластины	Bec	Вн	
Код заказа	H=HF	В	LF	WF	LH	на						(кг)	R	L
SER/L1212F11	12	12	80	14	16	11ER/L···	SI60M025080-03510H	\	\	TT08PH	\	0.09	•	•
SER/L1212F16	12	12	80	16	21		SI60M035090-05312H	\	\	TT15PH	\	0.09	•	
SER1212H16	12	12	100	16	21		SI60M035090-05312H	\	\	TT15PH	\	0.09	0	
SER/L1616H16	16	16	100	20	24		SI60M035120-05316H	DEN16P15SH	SSBM030060H	TT15PH	TH25LH	0.20	•	•
SER/L2020K16	20	20	125	25	27	16ER/L···	SI60M035120-05316H	DEN16P15SH	SSBM030060H	TT15PH	TH25LH	0.39	•	•
SER/L2525M16	25	25	150	32	32		SI60M035120-05316H	DEN16P15SH	SSBM030060H	TT15PH	TH25LH	0.74	•	•
SER3225P16	32	25	170	40	30		SI60M035120-05316H	DEN16P15SH	SSBM030060H	TT15PH	TH25LH	0.96	0	
SER/L3232P16	32	32	170	40	31		SI60M035120-05316H	DEN16P15SH	SSBM030060H	TT15PH	TH25LH	1.37	•	0
SER/L2525M22	25	25	150	32	31		SI60M040160-07013H	DEN22P15SH	SSBM040060H	TT20PH	TH30LH	0.74	•	$\overline{\circ}$
SER3225P22	32	25	170	40	32	2255/1	SI60M040160-07013H	DEN22P15SH	SSBM040060H	TT20PH	TH30LH	0.96	0	
SER/L3232P22	32	32	170	40	32	22ER/L···	SI60M040160-07013H	DEN22P15SH	SSBM040060H	TT20PH	TH30LH	1.37	•	$\overline{\circ}$
SER/L4040R22	40	40	200	50	32		SI60M040160-07013H	DEN22P15SH	SSBM040060H	TT20PH	TH30LH	2.51	0	0
SER2525M27	25	25	150	32	25		SI60M050160-07212H	DEN27P15SH	SSBM040060H	TT20PH	TH30LH	0.74	0	
SER/L3232P27	32	32	170	40	33	27ER/L···	SI60M050160-07212H	DEN27P15SH	SSBM040060H	TT20PH	TH30LH	1.37	•	•
SER/L4040R27	40	40	200	50	33		SI60M050160-07212H	DEN27P15SH	SSBM040060H	TT20PH	TH30LH	2.51	0	•

Примечания: SI60M025080* обозначает M3.5*12

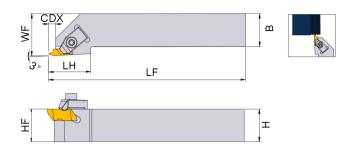
Токарные державки для нарезания резьбы

Державка для расточной обработки

На	рис.	показана	правая

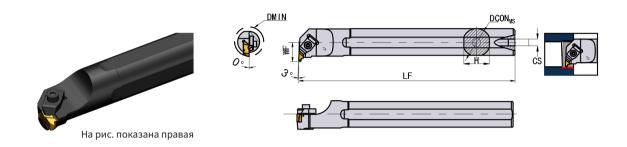
Код заказа		Разм	еры	(мм))		Пласти-	Винт	Подклад- ная пласти- на	Винт под- кладной пластины	Ключ	Ключ для подкладной пластины	Bec	В на- ли- чии
под запаза	DMIN	DCON _{MS}	Н	LF	WF	LH	на						(кг)	R L
SIR/L0008K08	9.9	8	7.4	125	4.95	20	08IR/L···	SI60M022050-03008H	\	\	TT06PH	\	0.05	• •
SIR/L0010K11	13	10	9	125	6.5	25		SI60M025060-03510H	\	\	TT08PH	\	0.08	• •
SIR0010H11	13	10	9	100	6.5	25		SI60M025060-03510H	\	\	TT08PH	\	0.08	0
SIR/L0010K11-A16	13	16	15	125	6.5	30	11IR/L···	SI60M025060-03510H	\	\	TT08PH	\	0.20	• 0
SIR/L0012K11	15	12	11	125	7.4	28		SI60M025060-03510H	\	\	TT08PH	\	0.11	• 0
SIR/L0012K11-A16	15	16	15	125	7.4	36		SI60M025060-03510H	\	\	TT08PH	\	0.20	• 0
SIR/L0013M16	19	16	15	150	9.4	32		SI60M035090-05312H	\	\	TT15PH	\	0.24	• 0
SIR/L0016Q16	21	16	15	180	10.8	40		SI60M035090-05312H	\	\	TT15PH	\	0.28	•
SIR0016N16	21	16	15	160	10.8	40		SI60M035090-05312H	\	\	TT15PH	\	0.28	0
SIR/L0020Q16	24	20	18	180	13.1	40		SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	0.44	• •
SIR0020P16	24	20	18	170	13.1	40	16IR/L···	SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	0.44	0
SIR/L0025R16	29	25	23	200	15.6	45		SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	0.77	• 0
SIR/L0032S16	38	32	30	250	19.1	50		SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	1.58	• 0
SIR/L0040T16	44	40	38	300	23.1	55		SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	2.96	0 0
SIR/L0050U16	60	50	48	350	28.1	50		SI60M035120-05316H	DIN16P15SH	SSBM030060H	TT15PH	TH25LH	5.39	00
SIR/L0020Q22	26	20	18	180	13.2	40		SI60M040120-07010H	\	\	TT20PH	\	0.44	• •
SIR/L0025R22	32	25	23	200	16.4	46		SI60M040160-07013H	DIN22P15SH	SSBM040060H	TT20PH	TH30LH	0.77	• •
SIR/L0032S22	39	32	30	250	19.9	50	22IR/L···	SI60M040160-07013H	DIN22P15SH	SSBM040060H	TT20PH	TH30LH	1.58	• 0
SIR/L0040T22	47	40	38	300	23.9	55		SI60M040160-07013H	DIN22P15SH	SSBM040060H	TT20PH	TH30LH	2.96	00
SIR/L0050U22	57	50	48	350	28.9	70		SI60M040160-07013H	DIN22P15SH	SSBM040060H	TT20PH	TH30LH	5.39	0 0
SIR/L0032S27	42	32	30	250	20.9	50		SI60M050160-07212H	DIN27P15SH	SSBM040060H	TT20PH	TH30LH	1.58	00
SIR/L0040T27	50	40	38	300	25	55	27IR/L···	SI60M050160-07212H	DIN27P15SH	SSBM040060H	TT20PH	TH30LH	2.96	0 0
SIR/L0050U27	60	50	48	350	30.1	70		SI60M050160-07212H	DIN27P15SH	SSBM040060H	TT20PH	TH30LH	5.39	00

Примечания: SI60M025080* обозначает M3.5*12


Режущие инструменты для нарезания резьбы

Державки для нарезания резьбы — серия GN

Проходные державки — линейные



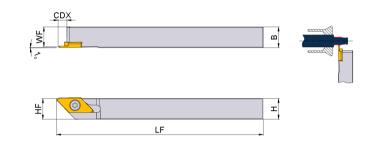
		ſ	Размер	оы (мм)		Комплек-	Винт	Прижимная планка	Ключ	Bec	Нали-
Код заказа	H=HF	В	CDX	LF	WF	LH	тующая пластина	P			(кг)	чие
GNSR1616H2	16	16	3.5	100	20	19		SCAM040120H	CAN02RH	TH30LH	0.20	•
GNSR2020K2	20	20	3.5	125	25	19	GN.2R	SCAM040120H	CAN02RH	TH30LH	0.38	0
GNSR2525M2	25	25	3.5	150	32	19		SCAM040120H	CAN02RH	TH30LH	0.74	0
GNSL1616H2	16	16	3.5	100	20	19		SCAM040120H	CAN02LH	TH30LH	0.20	0
GNSL2020K2	20	20	3.5	125	25	19	GN.2L	SCAM040120H	CAN02LH	TH30LH	0.38	0
GNSL2525M2	25	25	3.5	150	32	19		SCAM040120H	CAN02LH	TH30LH	0.74	0
GNSR2020K3	20	20	5.3	125	25	32	CN 2D	SCAM050200H	CAN03RH	TH40LH	0.39	•
GNSR2525M3	25	25	5.3	150	32	32	GN.3R -	SCAM050200H	CAN03RH	TH40LH	0.74	•
GNSL2020K3	20	20	5.3	125	25	32		SCAM050200H	CAN03LH	TH40LH	0.39	0
GNSL2525M3	25	25	5.3	150	32	32	GN.3L	SCAM050200H	CAN03LH	TH40LH	0.74	•

Примечания: SCAM040120H обозначает М4X12

Державки для нарезания резьбы — серия GN

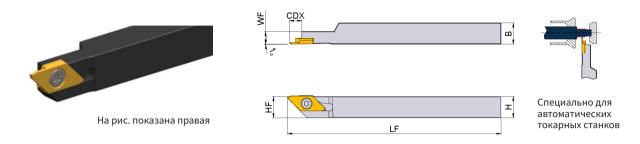
Державка для расточной обработки

		Pa	змеры	(мм)		Комплек-	Винт	Прижимная планка	Ключ	Bec	Нали-
Код заказа	DMIN	DCON _{MS}	WF	LF	CS	тующая пластина				(кг)	чие
GNAR20Q2	26	20	13	180	1/8-27 NPT	GN.2L	SCAM040120H	CAN02LH	TH30LH	0.44	0
GNAR25R2	34	25	17	200	1/4-18 NPT	GIV.ZL	SCAM040120H	CAN02LH	TH30LH	0.77	0
GNAL20Q2	26	20	13	180	1/8-27 NPT	GN.2R	SCAM040120H	CAN02RH	TH30LH	0.44	•
GNAL25R2	34	25	17	200	1/4-18 NPT	GN.ZR	SCAM040120H	CAN02RH	TH30LH	0.77	0
GNAR25R3	34	25	17	200	1/4-18 NPT	GN.3L	SCAM050200H	CAN03LH	TH40LH	0.77	0
GNAL25R3	34	25	17	200	1/4-18 NPT	GN.3R	SCAM050200H	CAN03RH	TH40LH	0.77	0


Примечания: SCAM040120H обозначает M4X12 ① Правые (R) пластины применимы для левых (L) державок, левые (L) пластины применимы для правых (R) державок.

Державки для нарезания резьбы — серия GST

Державка для проходной обработки Специально для автоматических токарных станков



			Pa	азмеры (мі	м)			Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	H=HF	В	CDX	CUTDIA	LF	HF	WF	тующая пластина			(кг)	R	L
GSTR/L1010JK3	10	10	6	12	120	10	10		SSAM045095Q	TT10PQ	0.09	•	0
GSTR/L1212JK3	12	12	6	12	120	12	12	GSTT3R/L	SSAM045095Q	TT10PQ	0.14	•	•
GSTR/L1616JK3	16	16	6	12	120	16	16		SSAM045095Q	TT10PQ	0.24	•	0
GSTR/L2020JK3	20	20	6	12	120	20	20		SSAM045095Q	TT10PQ	0.40	•	0
GSTR/L1010JK4	10	10	8	16	120	10	10		SSAM045095Q	TT10PQ	0.09	•	0
GSTR/L1212JK4	12	12	8	16	120	12	12	CCTT4D/I	SSAM045095Q	TT10PQ	0.14	•	•
GSTR/L1616JK4	16	16	8	16	120	16	16	GSTT4R/L	SSAM045095Q	TT10PQ	0.24	•	0
GSTR/L2020JK4	20	20	8	16	120	20	20		SSAM045095Q	TT10PQ	0.40	•	0

Примечания: SSAM045095Q обозначает M4.5X9.5

Державки для нарезания резьбы — серия GST

Державка для проходной обработки Для вторичных шпинделей автоматических токарных станков

			Pa	азмеры (м	м)			Комплек-	Винт	Ключ	Bec	Налі	ичие
Код заказа	H=HF	В	CDX	CUTDIA	LF	HF	WF	тующая пластина			(кг)	R	L
GSTR/L1010JK3-RS	10	10	6	12	120	10	7.2	CCTT2D/I	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK3-RS	12	12	6	12	120	12	7.2	GSTT3R/L	SSAM045070Q	TT10PQ	0.14	•	0
GSTR/L1010JK4-RS	10	10	6	12	120	10	7.2	GSTT4R/L	SSAM045070Q	TT10PQ	0.09	•	0
GSTR/L1212JK4-RS	12	12	6	12	120	12	7.2	GST14K/L	SSAM045070Q	TT10PQ	0.14	•	•

Примечания: SSAM045070Q обозначает M4.5X7

Рекомендуемые параметры резания (количества проходов)

Шаг резьбы	0.5	0.75	1	1.25	1.5	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
TPI	48	32	24	20	16	14	12	10	8	7	6	5.5	5	4.5	4
Количество проходов	4-6	4-7	4-8	5-9	5-10	5-10	6-12	8-14	8-16	9-17	9-18	10-19	10-20	11-20	11-21

Рекомендуемые параметры резания (скорость резания)

									-
ISO	Ма	териал загото	ВКИ	Твер- дость	Диапазон резания	Режим резания	Стружко- ломающая канавка	Сплав	Скорость резания Vc(м/мин.)
			родистая сталь .1-0.25%)	HB125					120-160-230
	Углеродистая сталь		еродистая сталь 25-0.55%)	HB150					100-150-195
			еродистая сталь 55-0.80%)	HB170					90-140-180
		Неза	каленная	HB180					100-130-180
	Низколегиро- ванная сталь	Зак	аленная	HB275	Чистовая и				75-100-140
P		Зак	аленная	HB350	получисто- вая обра-	Непре- рывный	TC	GM3325	60-80-130
<u> </u>	Высоколегиро-	Ото	жженная	HB200	ботка	рыыный			80-110-140
	ванная сталь	Зак	аленная	HB325					70-90-115
		Нелег	ированная	HB180					180-200-220
	_	Низколе	егированная	HB200					70-110-150
	Литая сталь	Высокол	егированная	HB225					60-100-120
		Марганцевая	сталь (12-14%Мп)	HB250					30-40-50
		Ауст	генитная	HB180	Чистовая и				90-120-140
M	Нержавеющая сталь	Ферритная	л/мартенситная	HB200	получисто- вая обра-	Непре- рывный	TC	GM3325	70-140-170
	Сталь	Двухфазная н	ержавеющая сталь	HB230	ботка	рывный			60-90-120
		Феј	рритная	HB130					110-130-170
	Ковкий чугун	П	ерлит	HB230					85-100-145
1/		Низкая прочн	ость на растяжение	HB180	Чистовая и получисто-	Непре-			100-120-160
K	Серый чугун	Высокая прочн	ность на растяжение	HB260	вая обра-	рывный	(GM3325	80-100-140
	Чугун с шаровид-	Фе	ритная	HB160	ботка				110-125-160
	ным графитом	Перлит		HB250					80-100-120
	Кованные	Нест	ареющая	HB60					350-500-700
	алюминиевые сплавы	Ста	реющая	HB100					300-400-500
		Нест	ареющая	HB75	Чистовая и				300-450-500
N	Литейные алюминиевые		реющая	HB90	получисто-	Непре-	TC	GM3325	200-290-400
	сплавы	С кремни	лем (13-22%Si)	HB130	вая обра- ботка	рывный			100-200-300
	Медь и медные	Л		HB90					100-220-300
	сплавы	Бронза и медн	 ый сплав без свинца	HB100					80-180-255
		На основе	Отожженная	HB200					35-45-60
		железа	Стареющая	HB280					25-35-50
	Жаропрочные		Отожженная	HB250	Чистовая и				15-25-30
S	сплавы	На основе никеля и	Стареющая	HB350	получисто- вая обра-	Непре-	TC	GM3325	10-15-25
		кобальта	Литейная	HB320	вая обра- ботка	рывный			10-13-20
		Коммерческа	я чистота (99.5%Ti)						140-150-170
	Титановый сплав		іавы α+β	1050Rm					50-60-70
_			енная сталь	HRC55	Чистовая и				40-45-50
Н	Высокотвердые материалы	Отбеленный чугун		HB400	получисто- вая обра- ботка	Непре- рывный	TC	GM3325	30-40-50

для нарезания резьбы

Рекомендуемые параметры резания для резьбонарезных инструментов серии GST

Количество проходов и рекомендуемая радиальная подача

Ві	⁄Д	Шаг резьбы (мм)	Модель	Вершина инстру- мента (RE)	Общая глубина резания (мм)	Коли- чество прохо- дов (об)	1	2	3	4	5	6	7	8	9	10
		0.20			0.15	4	0.06	0.04	0.03	0.02						
		0.20			0.19	4	0.07	0.06	0.04	0.02						
		0.30	GSTT 3R/L A/B6000	Макс. 0.05	0.23	4	0.08	0.07	0.06	0.02						
		0.35	GSTT SK/L A/D0000	Плоская	0.27	5	0.08	0.07	0.06	0.04	0.02					
		0.40			0.30	5	0.10	0.08	0.06	0.04	0.02					
		0.45			0.34	6	0.10	0.08	0.06	0.04	0.04	0.02				
Me	ェ	0.50	GSTT 3R/L A/B6000	Макс. 0.05 Плоская	0.38	6	0.10	0.10	0.07	0.05	0.04	0.02				
Три	apy:		GSTT 3R/L A/B60005	0.05	0.33	5	0.10	0.10	0.07	0.04	0.02					
Метрическая резьба	Наружная резьба	0.60	GSTT 3R/L A/B6000	Макс. 0.05 Плоская	0.45	7	0.10	0.10	0.08	0.06	0.05	0.04	0.02			
оезь	936		GSTT 3R/L A/B60005	0.05	0.40	6	0.10	0.10	0.08	0.06	0.04	0.02				
ба	à	0.70		0.05	0.48	6	0.10	0.10	0.10	0.10	0.06	0.02				
		0.75	GSTT 3R/L A/B60005	0.05	0.52	7	0.10	0.10	0.10	0.08	0.07	0.05	0.02			
		0.80		0.05	0.56	7	0.10	0.10	0.10	0.10	0.08	0.06	0.02			
		1.00		0.05	0.71	8	0.15	0.15	0.12	0.10	0.08	0.06	0.03	0.02		
		1.00	GSTT 3R/L A/B60005	0.05	0.66	7	0.18	0.15	0.12	0.10	0.06	0.03	0.02			
		1.25	GSTT 3R/L N6001	0.10	0.90	9	0.20	0.18	0.13	0.10	0.10	0.07	0.05	0.05	0.02	
		1.23		0.05	0.85	8	0.20	0.18	0.13	0.10	0.10	0.07	0.05	0.02		
		1.50	GSTT 3R/L N6001	0.10	1.04	10	0.20	0.18	0.14	0.12	0.10	0.10	0.08	0.05	0.05	0.02

Рекомендуемая скорость резания

ISO	Материал заготовки	Твердость (НВ)	Серия	Сплав	Линейная скорость Vc(м/мин.)
P	Сталь	≤300	GSTT	GAT7115	120(60-180)
	Сталь	≪300	0311	GAT7125	90(40-150)
Λ.Λ	Цорукаровошая сталь	≤300	GSTT	GAT7115	100(60-150)
M	Нержавеющая сталь	≪300	USII	GAT7125	80(40-130)

Приложение

Сравнение стружколомающих уступов

ISO	Тип инстру- мента	Применение	GESAC	Sandvik	Seco	Iscar	Амери- канский Kennametal	Walter	Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
		Чистовая обработка	GF QF TF SPL	PF QF LC	FF1 FF2 MF2	NF F3P	FP FN	FP5	LP SA SY SH	LU SU SE	TS TSF ZF	PP HQ CQ XQ	FA FG	VL VF VB
		Получистовая обработка (левая и правая кромки)	TS SV	К						UM HM	P S	25R	VF	
	Нега- тивные	Получисто- вая обработ- ка	GM QM TP	PM QM	M3 MF5	TF GN M3P	MP MN	MP3 MP5	MA MP	GU GE UX	TM DM AM	PQ PG PS GS PT	MC MP PC MT	VM LP MP GM
		Получисто- вая обработ- ка с Wiper	WMV	WMX WM	W-M3	WG	MW	Н.м	MW	GUW	SW ASW	WE WQ	WT	LW
P		Черновая- чистовая обработка	QR	PR	M5 M6 MR6 MR7	NR T3P	RP RN	RP5 RP7	RP GH	MU ME MX	TH THS	GT PH	RT	GR
		Тяжелая токарная обработка	QH	HR	RR9	R3P	RH	NRR	HX HV	HU HW HF	TU TUS		HT HY HD HZ	VT VH
		Чистовая обработка	MM FP SPL	PF UF	MF2 F1	PF F3P	FP LF	FP4	FP FV LP	LU LB SU	PSF PS PSS	PP XQ	FA FG	VF VL
	Пози- тивные	Получисто- вая обработ- ка	TP GP	PM UM	M3 F2	PP SM 14	MP	MP4	MP MV	SF MU	PM	HQ	PC MT	HMP MP C25
		Черновая- чистовая обработка	KM	PR UR	M5		MF	RP4						
		Чистовая обработка	SF YF	MF	MF1	VL SF F3M	FP FS LF	NF4 NMS	FH SH LM	SU EF	SF	MQ GU	EA	HA VP2
	Нега- тивные	Получисто- вая обработ- ка	SM LM	23 MM QM	M1 MF3 MF4	TF PP M3M	MS MP	NM4	MM MS MA	EX GU	SM	MS MU HU	FG SF EM MP	GS HS MM
M		Чернова- я-чистовая обработка	LR	MR	M5 MF5	NM R3M	RP	NR4 NR5	RM RK GH	EM MU	SH	TK ST	ET	VM RM
	Пози-	Чистовая обработка	MM FP	UF MF	F1	PF	LF	PM	FM LM	SU	PSF	GQ	FG	HFP VP1
	Пози- тивные	Получисто- вая-черно- вая обработ- ка	MM GP	UM MM	MF2	SM	MF	PM5	ММ MV без кода	MU	PS PM	MQ	SA	HMP C25

Сравнение стружколомающих уступов

ISO	Тип инстру- мента	Примене- ние	GESAC	Sandvik	Seco	Iscar	Амери- канский Kennametal	Walter	Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
	Нега-	Получи- стовая обработка	MK UK	KF KM	M4	GN	FN UN	MK5	LK MK GK	UZ UX	СҒ СМ всепе- риме- траль- ный	KQ KG С всепе- риме- траль- ный	КТ	MK GR VR
	тивные	Получи- стовая обработка с Wiper	WMV	WMX WM	W-M3	WG	MW	Н.м	MW	GUW	SW ASW	WE WQ	WT	LW
K		Черновая- чистовая обработка	НК	KR	M5 M6	NR	UN RP	RK5 RK7	GH RK	GZ	СН	KH GC ZS	RT	RK
	Пози-	Чистовая- получи- стовая обработка	MM GP	KF KM		14 19	MF	FK6 MK4	МК всепери- метраль- ный	MU	СМ	GK		НМР
	тивные	Черновая- чистовая обработка	KM	KM KR	M5		MP	RK4 RK6	Пласти- на без стружко- лома	US	Пласти- на без струж- колома		MT	C25
N	Пози- тивные	Универ- сальная обработка	AL	AL	AL	AS	HP	PM2	AZ	AG	AL	АН	FL	AK
S	Нега- тивные	Чистовая- получи- стовая обработка	EL SML	SGF	MF1	PP	MS	MS3	MJ	EX	HRF	TK	ML	VP2
3	Нега- тивные	Получи- стовая обработка	EM SMM	SM	M1	TF	UP	NMS	MS	EG	HRM	MS	MGS	VP3

Сравнение сплавов

ISO	По- кры- тие	Код	GESAC	Sandvik	Seco	Iscar	Амери- канский Kennametal		Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
		P01	GPT6110 GP1105	GC4205 GC4305	TP0500 TP0501 TP1000	IC9150 IC8150	KCP05B KC9105	WPP05S WPP05	UE6105 UE6005	AC810P	T9205 T9115 T9015	CA510 CA5505	TT8105 TT8115	NC3010
		P10	GPT6110 GP1115 GP1120	GC4215 GC4315 GC4415	TP0500 TP0501 TP1500 TP1501	IC9150 IC8150	KCP10B KC9110 KC9315	WPP10S WPP10	UE6010 UE6110 MC6015	AC810P AC8025P AC820P	T9215 T9115 T9015	CA515 CA5515	TT8105 TT8115	NC3010 NC3215
	CVD	P20	GPT6120 GPT6130 GP1120 GP1225	GC4225 GC4325 GC4425	TP1500 TP1501 TP2500 TP2501 TP2000	IC9250 IC8250	KCP25B KC9125 KC9225 KC9325	WPP20S WPP20	UE6120 UE6020 MC6025	AC820P	T9225 T9125 T9025	CA525 CA5525	TT8125 TT8115 TT5100	NC3225 NC3120
		P30	GPT6120 GPT6130 GP1225 GP1130 GP1135	GC4235 GC4335	TP2500 TP2501 TP3501 TP3500	IC635 IC9350 IC8350	KCP30B KC9140 KC9240	WPP30S WPP30	MC6035 UE6035	AC830P AC630M	T9235 T9135	CA530 CA5535	TT8125 TT5100 TT8135 TT7100	NC3030 NC5330
P		P40	GP1135	GC4240 GC4335	TP3500 TP40	IC635	KCP40B KC9240	WPP30S WPP30	MC6035 UH6400	AC830P AC630M	T9235 T9135	CA530 CA5535	TT5100 TT8135 TT7100	NC3030 NC5330
		P01										PR1005		
		P10		GC1525 GC1025	CP200 TH1000 TS2000	IC250 IC507 IC570	KCU10 KC5010 KC5510		MS6015 VP10MF		AH710	PR1005 PR1115 PR1215		PC8110
	PVD	P20	GM3225	GC1525 GC1020 GC1125 GC1025	CP250 TS2500	IC908 IC928 IC1008 IC1028 IC3028	KCU25 KC5025 KC5525		VP15TF VP20MF	AC520U	AH710 AH330	PR930 PR1025 PR1115 PR1215 PR1425 PR1225	TT9020 TT7010 TT7220	PC5300 PC8115
		P30	GM3225	GC1125 GC1025	CP500	IC928 IC1008 IC1028 IC3028	KC5525		VP15TF VP20MF	AC530U	GH330 GH730 AH120 AH330 AH740	PR1025 RR1225 PR1535	TT8020 TT9020 TT7220	
		P40	GM3225	GC1145 GC2145	CP500	IC928 IC1008 IC1028	KC5525		VP15TF VP20MF		AH140		TT8020	

Сравнение сплавов

ISO	По- кры- тие	Код	GESAC	Sandvik	Seco	Iscar	Амери- канский Kennametal	Walter	Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
		M10	GM3215	GC1105 GC1115 GC1525		IC520	KCS10	WXM10	VP10RT	AC510U	AH110 AH8005	PR1025 PR1215	TT5080	PC8105
		M20	GM3220	GC1025 GC1115 GC1125 GC1525	TS2000 TS2500 CP200	IC520 IC507 IC807 IC907	KC5010 KC5510 KCU10	WSM10 WSM10S	VP10RT VP15TF VP20MF VP20RT UP20M	AC520U	AH120 AH630 AH8015 SH725 GH330	PR930 PR1025 PR1125 PR1215 PR1425 PR1225	TT9030 TT8010	PC8110 PC8115
	PVD	M30	GM3220 GM3225	GC1125 GC2035	TS2500 CP200 CP500	IC520 IC507 IC807 IC907 IC308 IC3028	KC5025 KC5525 KCU25	WSM20 WSM21 WSM20S	VP15TF VP20MF VP20RT UP20M MP7035	AC530U AC6040M	AH630 AH725 SH725 SH730 GH730	PR1125 PR1225 PR1535	TT9080 TT8020	PC5300 PC9030
M		M40	GM3225	GC1125 GC2035	CP500 CP600	IC3028 IC308 IC908 IC928	KC5025 KC5525 KCU25	WSM30 WSM30S	MP7035	AC6040M	AH645			PC5400
		M10	GM1115	GC2015 GC2220		IC9250 IC520M	KCM15B	WAM10	MC7015	AC610M		CA6515	TT9215	NC9115
	CVD	M20	GM1115	GC1515 GC2015 GC2025 GC2220	TM2000 TP200	IC9025 IC9350 IC4050	KCM15B KCM25B	WAM20	MC7015 US7020 MC7025	AC6020M AC630M	T6120	CA6525	TT9215 TT9225	NC9125 NC9025 NC5330
		M30	GM1125 GM1230	GC2040 GC235	TM2000 TM4000 TP40	IC9350 IC4050 IC635	KCM25B KCM35B	WAM20	MC7025 US735	AC6030M AC630M AC830P	T6130		TT9225 TT9235	NC9135
		M40	GM1125 GM1230	GC235	TM4000	IC635	KCM35B KCP40B		US735				TT9235	
		K01	GK1115	GC3205	TK1001 TH1500 TK1000	IC5005 IC8150	KCP05B KCP10B KCL05B	WKK10S WAK10	UC5105 MC5005	AC4010K AC405K	T5105	CA310 CA4010 CA4505 CA5505	TT7005	NC6205 NC6210
K	CVD	K10	GK1115 GK1120	GC3205 GC3210 GC3215	TK1001 TK2001 TK2000 TP0500 TP1500	IC5005 IC5010	KCK15B TN5015B	WKK10S WAK10	UC5105 UC5115 MC5005 MC5015	AC4015K AC405K AC415K	T515 T5105 T5115	CA315 CA4515 CA4010 CA4115 CA4120	TT7005 TT7015	NC6205 NC6210 NC315K
IX		K20	GK1115 GK1120 GK1125	GC4325 GC3215 GC3220 GC3225	TK2001 TP2500	IC5010	KCK20B KCP25B	WKK10S WKK20S WAK10 WAK20	UC5115 MC5015	AC4015K AC415K AC420K	T5115 T5125	CA315 CA4515 CA4115 CA4120 CA4515	TT7015 TT7310	NC6215 NC315K NC5330 PC5300
		K30	GK1125	GC3040 GC4335	TK2001 TP2500 TP200			WAK30 WKP30S	UC5115 MC5015	AC420K AC820P	T5125	CA320 CA4120		NC5330 PC5300
		N01	GN9110 GNT7120	H10 H13A			K605			H1 H2	KS05F	KW10		H01
N		N10	GN9110 GNT7120		890 H15	IC20	K313 K110M THM	WK10	HTi10	EH10 EH510	TH10 H10T	KW10 GW15	K10	
N	PVD	N20	GN9120 GNT7120		HX KX 883 H15 H25	IC20	K715 KMF K600			G10E EH20 EH520	KS15F		K20	
		N30	GN9130 GNT7120		H25 883		G13 THR							
C		S10	GST7115 GST7120 GS3115	GC1105	TS2000 TS2500	IC807 IC907	KCU10 KC5010	WSM10S	VP10RT MP9015	AC510U AC5015S	AH8015 AH905 SH730 AH110	PR005S PR015S	TT8010	AH8005 AH8015
2		S20	GST7130	GC1115 GC1125	CP500	IC808 IC908	KCU25 KC5025	WSM20S	MP9015	AC510U AC520U AC5025S	AH8015 AH120 AH725	PR015S PR1535	TT8020	AH8015 AH7025

Сравнение сплавов металлокерамики

ISO	По- кры- тие	Код	GESAC	Sandvik	Seco	Iscar	Kennametal	Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
		P01				IC20N	KT1120	NX1010	T110A T1000A	NS520	TN610		CN20
		P10	GP91TM GP92TM	CT5015	TP1020	IC20N IC75T	KT1120 KT175	NX2525	T1200A T1500A	NS520 NS9530	TN610 TN60	СТ3000	CN20 CN1000 CN1500
P	Нет	P20	GP91TM GP92TM	CT5015	TP1020	IC20N IC75T IC30N	KT125	NX2525 NX3035	T1200A T1500A	NS9530 NS530 NS730	TN620 TN90	СТ3000	CN1000 CN1500 CN2000
		P30				IC75T IC30N		NX3035 NX4545	T250A	NS740			CN2500
	PVD	P01-P20	GP31TM	GC1525	TP1030	IC520N IC530N	KT315 KTP10	AP25N VP25N MP3025 VP45N	T1500Z T2000Z T3000Z	J530 GT9530 GT530 GT730	PV710 PV720	PV3010	CC1500 CC2500

Сравнение сплавом с покрытием PCBN & PCD

ISO	Код класси- фика- циии	GESAC	Шанте- вик	Seco	Iscar	Kennametal	Walter	Mitsubishi	Sumitomo	Tungaloy	Kyocera	TaeguTec	Korloy
	K01	BKN115P BKC120P	CB7525	CBN050C CBN300P	IB50 IB85	KB1630 KB1345	WCB80	MB710	BN500 BNC500 BN7000	BX910 BX930 BX950	KBN475	TB730	KB370
K	K10	BKN115P BKN225Z BKN225S	CB50 CB7050	CBN20 CBN200 CBN300	IB55	KB9610	WCB50	MB5015 MB4020	BN7000 BN500	BX470 BX480 BX950	KBN60M KBN900	KB90A	KB350
	K20	BKN115P BKN225Z BKN225S		CBN350 CBN500 CBN600	IB90	KB9640	WCB80	BC5030 MB730 MBS140	BN7000 BNS800	BXC90 BX90S	KBN900		DBS800
	H01	BHC210P BKN225Z	CB20	CBN050C CBN010 CBN10 CBN100	IB25HC IB20H	KB1610	WCB30	BC8105 MB810	BNC2010 BNC100 BN1000 BN2000 BNX10	BXM10 BX310 BXC30	KBN05M KBM10M KBN510	TB610 KB50	KB410 KB1000
	H10	BHC210P BHC115P BHC215Z BHC125P	CB7105 CB7015 CB50 CB7050	CBN160C CBN150 CBN060K CBN200	IB50	KB9610 KB5610 KB1615 KB1625	WCB50	BC8110 MBC010 MB825	BNC2010 BNC2020 BNC160 BNC200 BN2000	BXM10 BX330	KBN05M KBM10M KBN25M KBN510 KBN525	TB650 KB50	DNC250 KB320 KB2000
	H20	BHC225P BHC125P BHC225Z BHN225S	CB7115 CB7025 CB7525	CBN400C CBN300P CH2540 CBN350 CBN500	IB25HA IB55	KB5625 KB1340	WCB80	BC8120 MBC020 MB8025	BNC2020 BNC200 BNX20	BXM20 BXC50 BX380	KBN25M KBN30M KBN35M KBN900	TB670	KB420
	H30	BHC135P	CB7525	CH3515	IB55	KB9640 KB5630		BC8130 MB835	BNC300 BN350 BNX25	BXM20 BXC50 BXA20	KBN30M KBN35M KBN900	TB730 KB90A	DNC350 KB335 KB425
S	S01	BSN115P		CBN200		KB5630	WCB80	MB4020	BN7000	BX470 BX480	KBN65M KBN70M KBN570 KBN65B	KB90 KB90A	KB370
	N01		CD05	PCD05		KD1405 PD100		MD205	DA1000 DA90	DX180 DX160	KPD001	TD810	DP200
N	N10	DNN125P	CD10	PCD10	ID5	KD1415 KD1400	WD10	MD220	DA1000 DA150	DX140 DX110	KPD001 KPD010 KPD230 KPD250		DP200
	N20	DNN125P		PCD20		KD1425		MD230	DA1000 DA2200	DX120	KPD001 KPD010 KPD230 KPD250	KP300	DP150
	N30			PCD30 PCD30M		KD1400		MD2030	DA1000 DA2200	DX110			DP90

Руководство по выбору токарных инструментов для обработки мелких деталей

GAT7115 хорошо подходит для обработки нержавеющих сталей 303 и 304. GAT7125 хорошо подходит для обработки нержавеющих сталей средней и высокой твердости, таких как 316L. GAT7120A хорошо подходит для обработки обыкновенной стали, легко обрабатываемой стали.

Твердые сплавы с покрытием

Сфера обработки	GESAC	Kyocera	NTK	Sumitomo	TaeguTec	Mitsubishi	Tungaloy
Высокоско- ростная обра- ботка	GAT7115	PR1225	DM4/DT4/ST4	AC5015S AC520U			AH725
Низкоскоростная обработка, с износостойкостью	GAT7120	PR930	TM4/ZM3/QM3	AC1030U		VP15TF	
Легкая преры- вистая	GAT7125	PR1535	TM4/QM3	AC5025S	TT9020		SH730
Универсальная обработка стальных деталей	GAT7120A	PR1725	TM4/ZM3/QM3				
Специальная для легкообра- батываемой стали		PR1705	VM1				

Руководство по выбору токарных инструментов для обработки мелких деталей

Тип канавки на пластине

Серия	Тип канавки на пластине											
Серия	GESAC	Kyocera	NTK	Tungaloy	Sumitomo	Mitsubishi	TaeguTec					
_	Негативные -Р	S	KHG/K	W	FY	F						
Серия пласти- ны с уни-	Позитивные -Р	F	KHG/K	W	FY	F						
версальной канавкой	G	U	UHG/U·U1	JPP	FX	SS						
канавкои	S	Υ	UHG/U·U1									
	AF	CF	AMX									
Серия пластины с трехмер-	AK	SK/SKS	UL	JS			SA					
ной струж-	BF	GF	AZ7/YL/AM3		FC/SI							
коломающей канавкой	ВК	CK	CL	JS								
	ММ	GQ	YL		SC/SI							
Серия пласти- ны для обра- ботки обрат- ным точением	GSAB	ABS	TBP		SBT							
	GSTB	TKFB		JXB JTB		BTAT						

Серия	Особенность	Геометрия канавки	Рекомендуемые условия работы
	1. Делятся на левые и правые, которые выбираются в зависимости от условий	Р	Конструкция с наклонной канавкой подходит для обработки с небольшой глубиной резания, обладает хорошей возможностью отвод и ломания стружки
Серия пластины с универсальной канавкой	обработки 2. Режущая кромка острая позволяет эффективно снижать силу резания	G	Конструкция с большим передним углом и длинной прямой канавкой может удовлетворять условиям работы с небольшой подачей и большой глубиной резания
канавкой	3. Универсально для проходной токарной обработки, а также для подрезной обработки при небольшой глубине резания	S	Конструкция с углом наклона кромки и длинной прямой канавкой обладает хорошим эффектом вывода стружки, осуществляет универсальную обработку мелких деталей, подходит для чистовой и получистовой обработки
		AF	Конструкция с узкой канавкой и большим передним углом может осуществлять минимальную глубину резания 0.02-0.2 мм, обладает хорошим эффектом ломания стружки, может получать качественную обработанную поверхности.
	1. Левые и правые являются	AK	Конструкция с острой кромкой и углом наклона кромки позволяет реализовать изменяемую глубину резания, обладает хорошим эффектом отвода стружки, может получать хорошую обработанную поверхности.
Серия пластины с трехмерной стружколомающей канавкой	ломание стружки возможно при изменении подачи и глубины резания	BF	Специально разработанная конструкция стружколомательного уступа с малым передним углом подходит для обработки при малой глубине резания, уделяя особое внимание удалению стружки, высокая прочность вершины инструмента удовлетворяет требованиям универсальной обработки.
		ВК	Конструкция с широкими канавками и углом наклона кромки обладает хорошими эффектами отвода стружки, может получить выдающуюся обработанную поверхности
		ММ	Конструкция с двум передними углами, гипоидным стружколомательным уступом обеспечивает широкий диапазон обработки, отличные характеристики ломания и отвода стружки, подходит для черновой обработки мелких деталей.

Руководство по выбору токарных инструментов для обработки мелких деталей

Отрезка и обработка канавок

Серия	Категория	GESAC	Kyocera	NTK	TaeguTec	Mitsubishi	Tungaloy	Korloy	Iscar
Неглубокая канавка	Трехлезвийная неглубокая канавка	Доступно по запросу GB	TGF GBA	GTMH		GTAH	JSTG	TBGF	
Глубокая канавка	_	GKD	KGM	KGWP		GY2M	JCTE		
Шлифо- вальная отрезка	Вертикальная установка (обычная пластина)	GSTC	TKF	СТР		СТАН	JXGR	SBC	SCH
	Вертикальная установка (тонкая пластина)	GSTS	TKFS						
Прессован- ная отрезка	Шлицевая	GTD	GDM	CDTP	TDJ	GY	JCGWS	MGMN	DGN

Серия	Выбор угла подъема	Особенность	Геометрия канавки	Рекомендуемые условия работы
		Обычные отрезные инструменты, как правило,	U	Конструкция с большим передним углом и мелкой вершиной обладает хорошей остротой, эффективно оптимизирует качество поверхности обрабатываемой детали.
GSTC	Пластины без угла подъема эффективно предотвращают	используются правые державки, а в случаях, когда оснащается вторичный шпиндель, чтобы помогать удерживать заготовку для отрезки, в основном используются левые	Т	Усиленная пластина с более большим радиусом закругления вершины и более малым передним углом обеспечивает прочность режущей кромки и эффективно увеличивают срок службы инструмента.
	выкрашивание кромки пластины и обматывание стружки, обеспечивая лучший срок службы; пластины с углом подъема	державки.	N	Конструкция с большой плоской канавкой, без вершины обеспечивает остроту пластины и эффективно увеличивает срок службы инструмента.
GSTS	могут уменьшить размер оставляемого сердечника в сплошных прутках, а также предотвратить остаточные кольца и деформацию в полых трубах.	плошных прутках, а также редотвратить остаточные ольца и деформацию в в случаях, когда вторичный шпиндель помогает удержать заготовку для отрезки, и		Конструкция с большим передним углом и мелкой вершиной обладает хорошей остротой, эффективно оптимизирует качество поверхности обрабатываемой детали.
GSTT		Типичные резьбонарезные инструменты обычно подходят для обработки универсальной резьбы 55° и 60°.	-	Конструкция с острым передним углом подходит для нарезания резьбы на мелких деталях

Резьба

Серия	Категория	GESAC	Kyocera	NTK	Tungaloy	Iscar
Вертикальная установка	Две кромки	GSTT	TKFT	TTP	JSXB	SCI

фатия	Размеры							Инстру-	
Форма	Код заказа	А	В	С	D	E	F	α°	мент
C So. A	DCN1204MH	4.76		12.4	7.4				
0 8	DCN1604MH	4.76		15.6	9.8				Проход- ной — тип М
	DCN1904MH	4.76		18.6	11.6				
	DDN1103MH	3.3		9.2	5.9				
0 8 A	DDN1504MH	4.76		12.4	7.4				Проход- ной — тип М
C % A	DSN1204MH	4.76		12.4	7.4				
0 8	DSN1504MH	4.76		15.6	9.8				Проход- ной — тип М
	DSN1904MH	4.76		18.6	11.6				
60°	DTN1603MH	3.3		9.2	5.9				
8	DTN2204MH	4.76		12.4	7.4				Проход- ной — тип М
	DVN1603MH	3.3		9.2	5.9				
S A									Проход- ной — тип М
80°	DWN0603MH	3.3		9.2	5.9				
	DWN0804MH	4.76		12.4	7.4				Проход- ной — тип М
4-1									

фанца	Vez sevese		Инструмент						
Форма	Код заказа	А	В	С	D	Е	F	α°	Инструмент
A	DEN16P15SH	3.21	14.21	9.525	3.5				SER/L*16*
	DEN22P15SH	4.019	18.474	12.7	4.0				SER/L*22*
A-A	DEN27P15SH	4.748	24.428	15.875	5.0				SER/L*27*
B	DIN16P15SH	3.21	14.21	9.525	3.5				SIR/L*16*
	DIN22P15SH	4.019	18.474	12.7	4.0				SIR/L*22*
B B-B	DIN27P15SH	4.748	24.428	15.875	5.0				SIR/L*27*

Форма	Код заказа				Размеры				Инстру-
ФОРМИ	код заказа	А	В	С	D	Е	F	α°	мент
	DCN1203PD	12.5	3.18	0.98	8	6.9			
A & & B C	DCN1604PD	15.7	4.76	1.1	9.2	7.9			Проход- ной —
₩ W W W W W W W W W W W W W W W W W W W	DCN1904PD	18.85	4.76	1.472	11.7	10			тип Р
	DCN2504PD	24.4	4.76	3.12	16.6	13			
A B C	DDN11T2PD	9.35	2.7	0.7	9	5.2			
4 m o o	DDN1503PD	12.5	3.18	0.95	8	6.9			Проход- ной — тип Р
	DSN1203PD	12.5	3.18	0.95	8	6.9			
A B C	DSN1504PD	15.7	4.76	1.13	9.2	7.9			
W W W W W W W W W W W W W W W W W W W	DSN1904PD	18.75	4.76	1.47	11.7	10			Проход- ной — тип Р
	DSN2506PD	24.4	6.35	3.29	16.6	12.8			
	DSN2504PD	24.4	4.76	2.5	15.68	12.8			
_	DRN1204PD	9.8	3.18	1.13	6.2	4.9			
B	DRN1604PD	13.6	4.76	1.8	10.5	6.9			Проход-
	DRN2004PD	17.3	4.76	1.8	11.5	7.9			ной — тип Р
——————————————————————————————————————	DRN2506PD	21.8	6.35	1.77	12.04	10			
60°	DTN16T2PD	9.35	2.7	1.3	6.5	5			
60°	DTN2203PD	12.5	3.18	0.95	8	6.9			Проход- ной —
m - 0 00									тип Р
80° B C	DWN06T2PD	9.35	2.7	1.3	6.5	5			
W D D D D D D D D D D D D D D D D D D D	DWN0803PD	12.5	3.18	0.95	8	6.9			Проход- ной — тип Р

форма	Vog aavaaa				Размеры				Инстру-
Форма	Код заказа	А	В	С	D	Е	F	α°	мент
A So. B C	DCN1204DD	12.4	4.76	1.6	6.2	4.4			
	DCN1606DD	15.8	6.35	3	8.2	5.5			Проходной — тип D
B C	DDN1504DD	12.2	4.76	1.6	6.2	4.4			
									Проходной — тип D
₹ B	DVN1603DD	9.1	3.18	1	6	4.4			
A m - c									Проходной — тип D
80° B C	DWN0804DD	12.4	4.76	1.6	6.2	4.4			
									Проходной — тип D

Ведомость спецификаций аксессуаров (подпорные подкладки)

форма	Код заказа			Инстру-					
Форма		А	В	С	D	Е	F	α°	мент
	PA3D	5	5.5						
	PA4D	6.7	7						
	PA5D	7.8	8.5						Проходной — тип Р
	PA6D	9.8	11						
	PA8D	13.05	12						

Ведомость спецификаций аксессуаров (винты)

Форма	Vод эркээр		Размеры							
Форма	Код заказа	А	В	С	D	Е	F	α°	Инстру- мент	
	SPM050130H	M5X0.8	3.7	13.2	5		2			
	SPM060170H	M6X1.0	5	17.2	5.5		2.5			
	SPM060190H	M6X1.0	5	18.8	7.1		2.5		Проходной — тип М	
_ F ₊ _ _ F ₊ _	SPM080220FH	M8X1.0	6.2	21.8	6.7		3			
	SPM100240FH	M10X1.0	7.7	23.5	7		4			
	SDM060200H	M6X1.0		20	7	7	3			
左螺旋 Правый спираль	SDM060250H	M6X1.0		25	9	9	3		Проходной	
F C - E - C	SDM060280H	M6X1.0		28	9	9	3		— тип М	
	SDM080350FH	M8X1.0		35	11	11	4			
	SI60M022060-03008H	M2.2X0.4	3.0	6			TT06	60		
	SI60M025060-03510H	M2.5X0.45	3.5	6			TT08	60	Проходной — тип S	
	SI60M040100-05812H	M4X0.7	5.5	10			TT15	60	Расточный — тип S	
, E / A	SI60M050120-07012H	M5X0.8	7.2	12			TT20	60		
° 0 8	SI60M020050-02806S	M2.0X0.4	2.8	5			TT06	60		
	SI60M025065-03509S	M2.5X0.45	3.5	6.5			TT07	60	Малые детали	
	SI60M030072-04210S	M3X0.5	4.2	7.2			TT09	60	Проходной — тип S	
	SI60M040089-05313S	M4X0.7	5.3	8.4			TT15	60		
	SSAM045070Q	M4.5X0.5	6	6.8			TT10	57	GSTR/L*RS*	

Ведомость спецификаций аксессуаров (винты)

.	16.				Размеры				Инструмент
Форма	Код заказа	А	В	С	D	Е	F	α°	Инструмент
F /	SSAM045095Q	M4.5X0.75	6	9.45			TT10	57	GSTR/L*
°b m d									
A A	SSBM030060H	M3X0.5	5.5	8.5			TT15		
c	SSBM040060H	M4X0.7	7.8	8			TT20		
F	SCAM040120H	M4X0.7	5.5	14.4			TH30		
	SCAM050120H	M5X0.8	8.5	15.5			TH20		
C C	SCAM050200H	M5X0.8	8.5	23.5			TH40		
	SCAM060200H	M6X1	9.8	26			TH50		
F D	SJM050250D	M5X0.8	22	8	3		T15		
- C									Проходной — тип D
	SLM060130D	M6X1	6	13.4	0.7	S2.5			
	SLM080210FD	M8X1	8	21	6	S3			
D	SLM080250FD	M8X1	8	25	8	S3			
	SLM100270FD	M10X1	9.8	27.2	7	S4			Проходной —
C	SLM120360FD	M12X1	11.8	36	9.73	S5			тип Р
	SLM060170D	M6X1	6	17	3.5	S2.5			
	SLM060210D	M6X1	6	21	3.5	S2.5			
	SLM100300FD	M12X1	9.8	30	7	S4			

Ведомость спецификаций аксессуаров (прижимные планки)

фатия	Von agrees			Инстру-					
Форма	Код заказа	А	В	С	D	Е	F	α°	мент
	CAM01H	M5X0.8	11.2	14.7					
	CAM02H	M6X1.0	14	18.5					
	CAM03H	M6X1.0	14	21.5					Проходной — тип М
A	CAM04H	M6X1.0	14	24					
	CAM05H	M8X1.0	19	25					
	CAN02RH	5.44	11.2	21.9					
	CAN03RH	5.76	8.7	13.6					
C	CAN02LH	5.44	11.2	21.9					
	CAN03LH	5.76	8.7	13.6					
С	CAD01RD		16.5	30		12.8			
	CAD02RD		16.5	30		12.8			Проходной — тип D
	CAD03RD		16.5	30		12.8			

Ведомость спецификаций аксессуаров (рычаги)

Форма	Код заказа			ı	Размеры				- Инструмент
Форма	код заказа	А	В	С	D	Е	F	α°	
	LCL12CD	13	13.5						
	LCL16CD	18.5	18						
	LCL20CD	20.7	18.8						Проходной — тип Р
A	LCL25CD	24	24						
	LA2D	7.5	6						

Ведомость спецификаций аксессуаров (ключи)

Форма	Код заказа								
		А	В	С	D	Е	F	α°	Инструмент
A W	TH20LH	54	19			2			Проходной — тип М
	TH25LH	59	19			2.5			
	TH30LH	64	22			3			
	TH40LH	73	28			4			
	TH50LH	85	28.5			5			
	TH20LD	52	17			2			Проходной — тип Р
	TH25LD	57.5	17.5			2.5			
	TH30LD	63	20			3			
	TH40LD	70	25			4			
	TH50LD	80	28.5			5			

Ведомость спецификаций аксессуаров (ключи)

Форма	Код заказа								
		А	В	С	D	Е	F	α°	Инструмент
D B A	TT06PH	81	50	Т6	22				Проходной — тип S Расточный — тип S
	TT08PH	84	50	Т8	22				
	TT15PH	85	50	T15	27				
	TT20PH	88	53	T20	29				
	TT06PQ	51	35	Т6	15				Малые детали Проходной — тип S
	TT07PQ	54	35	Т7	19				
	TT09PQ	60	40	Т9	24				
	TT15PQ	66	45	T15	28				
	TT06PD	68	39	T06	15				Проходной — тип D Расточный — тип S
	TT08PD	75	44	T08	19				
	TT15PD	84	52	T15	27				

Ведомость спецификаций аксессуаров (пружины)

Форма	Код заказа		Muserowali						
		А	В	С	D	Е	F	α°	Инструмент
C	SPA7D	6.9	0.55	13					
A									Проходной — тип D
! - #									_

Xiamen Golden Egret Special Alloy Co., Ltd.

Адрес: №69, ул. Синлун, р-н Хули, г. Сямэнь, КНР Адрес завода: д. 1601-1629, ул. Цзицэн, зона концентрация промышленных производств

Тунъань, г. Сямэнь, КНР Телефон: +86-592-7310203 Факс: +86-592-7107322 Почтовый индекс: 361006 E-mail: GJ.GLB@CXTC.COM www.gesac-tools.com

